

Recent Advances in Re-Analysis Methods for NVH Including Shape and Topology Optimization

Zissimos P. Mourelatos

Mechanical Engineering Department, Oakland University, Rochester, MI 48309-4478, USA

Santosh Patil John Skarakis

BETA CAE Systems USA Inc.

- In Noise, Vibration and Harshness (NVH) :
- Physical partitioning (substructuring) is commonly used
- >FRF substructuring for interfaces with few DOFs
- Craig-Bampton (CMS) substructuring for interfaces with many DOFs
- In design optimization :
- >Changes can be global or local. The latter are common
- "Gauge" (e.g. thickness), shape, or topology changes

Practical Issues:

> Basis Φ must be recalculated for each new design

>Calculation of "triple" product $\Phi^T K \Phi$ can be expensive

- > Basis Φ must be recalculated for each new design
- >Calculation of "triple" product $\Phi^T K \Phi$ can be expensive

Interface matrices can be large in size

2013 ANSA & mETA Int'l Congress

Overview / Demonstration of Re-Analysis Methods

Basic Concept of Re-Analysis Methods

Re-Analysis Methods for Shape Changes

- Different Examples
- Shape/Gauge Optimization (Car Example)

Re-Analysis in Topology Optimization

Automotive Door Example

Re-Analysis methods provide approximate eigenvalues and eigenvectors

Conventional Approach

Re-analysis Approach

1. Form reduced basis: P

Eigen-analysis of full matrices

 $eig(\mathbf{K},\mathbf{M}) \Rightarrow \lambda, \Phi$

2. Project system matrices to reduced basis:

$$\mathbf{K}_{R} = \mathbf{P}^{T}\mathbf{K} \ \mathbf{P} \qquad \mathbf{M}_{R} = \mathbf{P}^{T}\mathbf{M} \ \mathbf{P}$$

3. Eigen-analysis of reduced matrices:

$$eig(\mathbf{K}_{R},\mathbf{M}_{R}) \Rightarrow \widetilde{\lambda}^{p},\mathbf{\Theta}$$

4. Obtain approximate eigenvectors:

 $\widetilde{\Phi} = \mathbf{P} \, \boldsymbol{\Theta}$

Re-Analysis methods (e.g. CDH, PROM, MCA) are differentiated by definition of reduced basis P

Re-Analysis Methods for Shape Changes

Major Challenge: Different mesh between baseline and modified designs

 $\implies \hat{\Phi}_1 \ (l \times m)$

For each node A of FE mesh 1 identify closest node B of ME mesh 0

Use MCA starting with $\hat{\Phi}_1$ to estimate Φ_1

2013 ANSA & mETA Int'l Congress

2013 ANSA & mETA Int'l Congress

Example of Shape / Gauge Optimization using MCA Re-Analysis

Example of Shape / Gauge Optimization using MCA Re-Analysis Roof Peak Response Envelope

UNIVERSITY

Design Variables

		lables	Lower Bound	Upper Bound
No.	Parameter	Baseline	(mm)	(mm)
	BPillar_Width	0	-10	40
2	RR_Header_X_Position	0	-150	150
3	Windshield_Header_Position	0	-130	130
4	Roof_Height	0	-130	150
5	7850276_Cross Bow 1	0.75	0.4	2
6	7850263_Cross Bow Main	0.75	0.4	2
7	7824312_ B-Pillar Inner RT Gauge	1.2	0.4	2
8	78502076_Roof Cross Bow 2	0.75	0.4	2
9	7824557_B-Pillar Inner RT Gauge	1.6	0.4	2
10	47071_Floor Cross Member Rea	1.4	0.4	2
11	7810628_Floor Seat Cross Member	0.75	0.4	2
12	92_Roof Cross Bow 3	0.75	0.4	2
13	7850202_Roof Gauge	0.79	0.4	2

Shape Design Variables

Morphing Active

where:
$$\operatorname{Re} sp = |y(f)|$$
, $f \in \{45, 140\}$ Hz
Roof Displacement Magnitude

- Kriging Metamodel (RSM)
- Design of Experiments using incremental space filling algorithm

Design Pts	Average Error	
40	53 %	
80	35 %	
120	26 %	
160	31 %	
200	18 %	
375	10 %	

ModeFRONTIER was used

Optimization History

Baseline and Optimal Designs

2013 ANSA & mETA Int'l Congress

Baseline and Optimal Values

No.	Parameter Name	Baseline	Optimal	Lower Bound (mm)	Upper Bound (mm)
1	BPillar_Width	0	-9.92708	-10	40
2	RR Header X Position	0	54.24584	-150	150
3	Windshield Header Position	0	-129.999	-130	130
4	Roof Height	0	6.298661	-130	150
5	7850276 Cross Bow 1	0.75	0.732604	0.4	2
6	7850263 Cross Bow Main	0.75	1.999987	0.4	2
7	7824312_ B-Pillar Inner RT Gauge	1.2	0.517935	0.4	2
8	78502076_Roof Cross Bow 2	0.75	1.165611	0.4	2
9	7824557_B-Pillar Inner RT Gauge	1.6	0.400019	0.4	2
10	47071 Floor Cross Member Rea	1.4	1.387041	0.4	2
11	7810628 Floor Seat Cross Member	0.75	1.079494	0.4	2
12	92 Roof Cross Bow 3	0.75	1.999551	0.4	2
13	7850202 Roof Gauge	0.79	1.999617	0.4	2

Baseline Design

Optimal Design

Baseline : 55.8 Hz Mode

× Ž×

0:base_phi100.op2 : Scalar: Eigenvectors, Translational, Magnitude : : SUBCASE 1 :: MODE 23 , FREQUENCY 5.586031E+001 , EIGENVALUE 1.231874E+005

Oakland UNIVERSITY

Topology Optimization with Re-Analysis Methods

- Optimizer uses MMA Method of Moving Asymptotes (in <u>MATLAB</u>)
 - Gradient Filtering to reduce mesh dependency
 - Paulson Scheme to avoid discontinuity / checker board
- <u>NASTRAN</u> for all calculations (mass, volume, objective, constraints, AND gradients)
- MCA Re-analysis for all eigenvalue / eigenvector estimations

Topology Optimization with Re-analysis

$\max\{\lambda_i\}, \qquad i=1,\ldots,N_{dc}$	of
s.t. $(K - \lambda_i M)\phi_i = 0, i = 1, \dots, N_{do}$	f
$\Sigma_{e=1}^N v_e \rho_e \le V, \qquad 0 < \rho_{min} < \rho_e < 1$,
$e = 1, \dots, N$	

Gradient Filtering for Mesh Dependency

Fine mesh provides more detail which can result in localized small holes

20 x 10 coarse mesh

40 x 20 fine mesh

Paulson Scheme

Prevents checker-board pattern producing onenode hinge connection

Four-element 2D example

Automotive Door Example

Automotive Door Example

Stiffener Details and Optimization Problem

848 CTRIA3 and CQUAD4 elements (thickness of all elements are design variables)

Optimization Problem:

Maximize frequency such that:

Mass/volume of stiffener is less than 80% of original mass/volume.

Gradient by Nastran

Gradient by Nastran+MCA

Using MCA reduced computational effort from 3 hours to 1 hour

➢Re-Analysis methods for gauge, shape and topology changes can be very effective for problems with repetitive analyses such as optimization.

CDH method is not recommended for shape and topology changes

>MCA method <u>is</u> recommended for shape and topology changes

Current research concentrates on refining re-analysis methods for shape, topology, and probabilistic optimization

Thanks for your Attention !!

Q & A

mourelat@oakland.edu

FRF Substructuring

Overview / Demonstration of Re-Analysis Methods

- > CDH/VBA, MCA and PROM Re-Analysis Methods
- Simplified Triple Product
 - Polynomial Regression Method
 - Large Perturbation Response using Successive Iterations
- >Re-Analysis Methods for Shape Changes
 - Different Examples
 - Shape/Gauge Optimization (Car Example)
- Re-Analysis in Topology Optimization
 - Automotive Door Example

CDH/VBA Re-Analysis Method

Modified Combined Approximation (MCA) Re-Analysis Method

Direct Solution of Modified Eigenproblem

 $\mathbf{K} \ \mathbf{\Phi} = \lambda \ \mathbf{M} \ \mathbf{\Phi}$

or $\Phi = \lambda \mathbf{K}^{-1} \mathbf{M} \Phi$

Iterative Solution of Modified Eigenproblem

$$\boldsymbol{\Phi}_{j} = \lambda \mathbf{K}^{-1} \mathbf{M} \mathbf{\Phi}_{j-1}$$

PROM: Parametric Reduced Order Modeling

X₁,X₂,X₃: design variables

Eigen-analysis of full matrices

 $eig(\mathbf{K},\mathbf{M}) \Rightarrow \lambda, \Phi$

1. Form reduced basis:

$$\mathbf{P} = \begin{bmatrix} \boldsymbol{\Phi}_0 & \boldsymbol{\Phi}_1 & \boldsymbol{\Phi}_2 & \boldsymbol{\Phi}_3 \end{bmatrix}$$

2. Project system matrices to reduced basis:

$$\mathbf{K}_{R} = \mathbf{P}^{T}\mathbf{K} \ \mathbf{P} \qquad \mathbf{M}_{R} = \mathbf{P}^{T}\mathbf{M} \ \mathbf{P}$$

3. Eigen-analysis of reduced matrices: $eig(\mathbf{K}_{R},\mathbf{M}_{R}) \Rightarrow \widetilde{\lambda}^{p},\mathbf{\Theta}$

<u>4. Obtain approximate eigenvectors:</u> $\widetilde{\Phi} = \mathbf{P} \mathbf{\Theta}$

- <u>Advantage</u>: Re-analysis is done using the reduced basis
- <u>Disadvantage</u>: Condensation of matrices can be expensive due to large size and high density of mode matrix P

Computational cost is approximately equal to (2m+1)/nof full triple-product cost

Simplified Triple Product

Example: Thin shell elements without transverse shear

$$\mathbf{K} = \mathbf{A}_0 + \mathbf{A}_1 t + \mathbf{A}_2 t^3$$
 $\mathbf{A}_i, i = 0,1,2$ are fixed matrices
Shell thickness

Similarly :

$$\mathbf{K}^{r} = \mathbf{A}_{0}^{r} + \mathbf{A}_{1}^{r}t + \mathbf{A}_{2}^{r}t^{3}$$

with
$$\mathbf{A}_{i}^{r} = \mathbf{\Phi}^{T} \mathbf{A}_{i} \mathbf{\Phi}$$

Polynomial Regression for Triple Product

Calculate triple products for 3 different thicknesses :

$$\begin{bmatrix} 1.0 & t_0 & t_0^3 \\ 1.0 & t_1 & t_1^3 \\ 1.0 & t_2 & t_2^3 \end{bmatrix} \begin{bmatrix} \mathbf{A}_0^r \\ \mathbf{A}_1^r \\ \mathbf{A}_2^r \end{bmatrix} = \begin{bmatrix} \mathbf{K}_0^r \\ \mathbf{K}_1^r \\ \mathbf{K}_2^r \end{bmatrix} \longrightarrow \mathbf{A}_i^r, \ i = 0, 1, 2$$

Then:

$$\mathbf{K}^{r} = \mathbf{A}_{0}^{r} + \mathbf{A}_{1}^{r} t + \mathbf{A}_{2}^{r} t^{3}$$

Similar expressions exist for K and M matrices of plate and solid elements.

Large Perturbation Response using Successive Iterations

- 1. Calculate the **baseline** eigenvectors Φ_0 .
- 2. Perturb design variables by 5% or so. Use Polynomial Regression approach to calculate reduced matrices

 $\mathbf{K}_r^1 = \mathbf{\Phi}_0^T \mathbf{K}_1 \mathbf{\Phi}_0$ and $\mathbf{M}_r^1 = \mathbf{\Phi}_0^T \mathbf{M}_1 \mathbf{\Phi}_0$ Small Size

and solve eigenvalue problem $\mathbf{K}_{r}^{1} \mathbf{\Phi}_{r}^{1} = \mathbf{M}_{r}^{1} \mathbf{\Phi}_{r}^{1} \mathbf{\Lambda}_{r}$ for eigenvectors $\mathbf{\Phi}_{r}^{1}$. The eigenvectors of the perturbed structure are equal to $\mathbf{\Phi}_{1} = \mathbf{\Phi}_{o} \mathbf{\Phi}_{r}^{1}$.

3. Repeat step 2 until the maximum value of all design variables is reached. The following recursive process is used for i = 1, 2, ..., n:

$$\mathbf{K}_{r}^{i} = \mathbf{\Phi}_{i-1}^{T} \mathbf{K}_{i} \mathbf{\Phi}_{i-1} \text{ and } \mathbf{M}_{r}^{i} = \mathbf{\Phi}_{i-1}^{T} \mathbf{M}_{i} \mathbf{\Phi}_{i-1}$$
$$\mathbf{K}_{r}^{i} \mathbf{\Phi}_{r}^{i} = \mathbf{M}_{r}^{i} \mathbf{\Phi}_{r}^{i} \mathbf{\Lambda}_{r}$$
$$\mathbf{\Phi}_{i} = \mathbf{\Phi}_{i-1} \mathbf{\Phi}_{r}^{i}$$
Polynomial Regression

- No K and M matrix updates needed
- No triple product calculation is needed
- Only small eigenvalue problems are solved

Method assumes Polynomial Regression is applicable

DV1 DV2 Excitation Pt. DV3 Excitation Pt. Constrained Response Pt.#2

Design	Min Thickness	Max Thickness	Perturbation
Variable	(mm)	(mm)	%
1	1.025	3.075	200
2	1.16	3.48	200
3	1.25	3.75	200
4	1.16	3.48	200
5	1.25	3.75	200

Automotive Rail Example

Response @ Pt. 1

2013 ANSA & mETA Int'l Congress

Elimination of Design Variables

imination of Design Variables

Automotive door
example with
1,46,589 DOF

8	#	Design Variable Description	Minimum	Maximum	
	Thickness (mm)				
	1	Inner Door panel RHS	1	3	
	2	Door impact bar	1	2.75	
	3	Inner Door panel LHS	0.5	1.75	
	4	Upper door hinge reinforcement	1	3	
	5	Door surround rear	0.25	1.25	
	6	Outer panel	0.25	1.25	
	7	Door latch reinforcement	1	2	
	8	Door surround rear	1.25	3.25	
	9	Door belt inner	0.75	1.75	
	10	Glass channel mounting brkt.	1.25	2.25	
	11	Door surround rear	0.25	1.25	
	12	Inner/Outer panel skirt	1	3	
	13	Inner/Outer panel skirt	2	4	
	14	Door belt outer	0.25	1.25	
	15	Door surround glass	0.25	1.25	
	16	Impact bar bracket	1	3	
	17	Door Inner belt skirt	1	3	
	18	Glass runner	0.25	1	
		Mass (Tonne	e)		
	19	Side view mirror mass	0.001	0.002	
	20	Door trim mass	0.00035	0.0005	

2013 ANSA & mETA Int'l Congress

2013 ANSA & mETA Int'l Congress

Oakland J

Mode Elimination

PROM and MCA for Shape Changes A Door Example

2013 ANSA & mETA Int'l Congress

2013 ANSA & mETA Int'l Congress

2013 ANSA & mETA Int'l Congress

Baseline and Optimal Design

¥ Í 🗴

,EIGENVALUE 2.101891E+005

Roof Response: Baseline at 73 Hz

0:base_phi100.op2 : Scalar: Eigenvectors, Translational, Magnitude : : SUBCASE 1 :: MODE 41 , FREQUENCY 7.296678E+001

Roof Response: Optimal Design at 72.8 Hz

0:NormalModes.op2 : Scalar: Eigenvectors, Translational, Magnitude : : Scale Factor 2.000E+000 : SUBCASE 1 :: MODE 37 , FREQUENCY 7.284739E+001 , EIGENVALUE 2.095018E+005

PROM and MCA for Shape Changes A Door Example

2013 ANSA & mETA Int'l Congress