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ABSTRACT 
 
The application of CFD is rapidly expanding with the growth in affordability of 
computational resources.   It is becoming essential for CFD solvers to provide validation 
and verification.  Mesh related issues play a very important role on accuracy and 
convergence.  The means to achieve high fidelity computational simulations of fluid 
dynamic phenomena is analyzed by considering the various constituent parts of the 
simulation hierarchy including the mathematical model of the physics, the numerical 
model, the computational model (including the mesh), and most importantly the human 
in the loop. The interactions among these elements are illustrated through examples. 
The use of Realizability as a goal in obtaining accurate, robust and efficient simulation 
methods is explained. 

1. INTRODUCTION 

CFD has become a key contributor in design and virtual prototyping of everything 
involving fluids.  From a broad perspective, CFD is used today in a variety of ways, from 
supplementing experiments and testing of systems to certification of the performance, 
safety, and reliability of high-consequence systems.   
 
Assessing the ability and accuracy of a CFD solver can only be achieved through 
validation and verification efforts.  The semantics and definitions for verification and 
validation are still the subject of discussion throughout organizations such as AIAA and 
ASME through various publications.  Descriptions of verification and validation are given 
in Table [1]: 

 

Terminology Definition  Meaning 

Verification “The process of determining that a 
computational model accurately 
represents the underlying 
mathematical model and its 
solution”  

The mathematical model and the 
solution algorithm are working 
correctly, and lies within the 
realm of mathematics 

Validation “The process of determining the 
degree to which a model is 
accurate representation of the real 
world from the perspective of the 
intended uses of the model” 

The discrete solution of the 
mathematical model is accurate 
and lies within the realm of 
physics 

Table 1: V&V definitions 
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The main focus here is to describe a useful integrated and hierarchical way to dissect 
the practice of computational fluid dynamics (CFD) with the goal of increasing its 
accuracy, hence effectiveness. 

2. SIMULATION HIERARCHY  

 
For our purposes, [2] we define physics as what happens in nature. Simulations of 
physics are an artificial attempt to mimic that physics effectively enough that it appears 
as the real thing, with certain practical benefits to be derived based on the ability to 
simulate. “High fidelity” simulations mimic the physics to a greater degree of match with 
the real physics than “lower fidelity” simulations. One can think of computational 
simulation of physics as comprising the elements described in what follows.  
 
The goal is to effectively represent the real physics, where “real” physics is simply a 
label for what occurs or would occur naturally. In computational simulations, the goal is 
to define a particular problem that occurs in nature and simulate it using computers.  
Fluid dynamic problems involve consideration of a volume of space over which we would 
like to observe the physical phenomena. We may also be interested only in a particular 
span of time. This extent of space and time is the physical domain of interest. There is 
then a corresponding computational simulation extent of space and time that represents 
a continuum, often finite, which may be referred to as the computational domain.  
 
As seen in Figure 1, humans build high fidelity simulations using certain building blocks 
starting with the mathematical model of the physics. The math model is simply a 
representation of the natural phenomena that are capable of being manipulated by 
mathematical analysis. The math model, or the collection of math models representing 
the physics, is by itself not the solution we are seeking, but the beginning of the means 
to obtain that solution.  
 

 
Figure 1: Building blocks of high fidelity CFD 
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We then create a numerical model or representation of the mathematical model. While 
the math model is an approximate representation of the real physics, the numerical 
model is an approximation to the math model. If the math model is once removed from 
the real physics, the numerical model is then twice removed. The numerical model or 
method or approach is still not the digital solution we seek. It is still just a means towards 
that solution. 

  

 
In computational fluid dynamics and similar fields, the finite continuum is “discretized”. 
One then considers specific discrete points in space and time. In general, one considers 
a net formed by connecting these points in a certain manner. In this way, the continuum 
volume is broken up into a finite collection of discrete sub- volumes, each sub-volume 
made up of relatively simple shapes such as hexahedra, tetrahedra or polyhedra in three 
spatial dimensions (See Figure 2.)  A corresponding discretization of the time span is 
developed, often as discrete time levels at which the solution is sought. This discretized 
space and time domain is the computational domain. The mathematical model, in the 
form of the corresponding numerical method, is applied to this discrete computational 
domain. This results in a large to very large to extremely large collection of algebraic 
equations that must then be solved using appropriate techniques on the digital 
computer. 
 

 
 

Figure 3: The human factor 

Figure 2: Mesh generation 
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Through all this, human beings are very much involved, making decisions at every level 
of this hierarchy. In order to achieve an effective result, one must carefully consider the 
human in the loop and not just the technical aspects of the mathematical, numerical and 
computational modeling. Humans (developers, users, support staff, researchers, 
engineers, educators, and more) play a critical role in making decisions about the 
elements of the simulation hierarchy (see Figure 3.) They help decide what types of 
math models are selected for a particular purpose and they help develop better (or 
worse) models themselves. They help develop and/or select the numerical methodology 
to be applied to the math models. They help construct and deploy the computational 
meshes. Humans develop computational mesh generation tools. They decide on the 
number and type of mesh cells, the near-wall spacing, etc. 
 
They may develop computer programs, construction tools and diagnostic tools to help 
with all this, but even in the so-called “automatic mesh adaptation” techniques it is the 
human that has decided what should be used to guide the adaptation. Humans decide 
the precision of the computations to be used, the number of CPUs to use in parallel and 
the amount of computational resources that should be made available to an individual 
user or a group of users within an organization. Humans decide the extent of the 
physical domain, the computational domain and the initial and boundary conditions to 
apply. It is, therefore, very important to take into consideration the human in the loop in 
order to obtain maximum effectiveness of the total simulation process. In fact, one of the 
declared purposes of this paper is to increase awareness of the human impact. Another 
purpose is to channel that awareness by allowing the human in the loop to acquire better 
knowledge of the process and therefore make better decisions.  
 

3. PROBLEM DEFINITION AND MODELING SELECTIONS  

 
Consider a typical aerodynamic application that could be part of an aerospace or 
automotive simulation. 
  

3.1. PROBLEM DEFINITION 
The practitioner would define the geometry and the physical conditions of the problem. 
For aerospace applications, this could be as simple as choosing the altitude and Mach 
number. For turbulent flows, there is a need to define the turbulence environment. 
Typically, this would be defined in terms of turbulence intensity and a length-scale. 
These problem definition parameters are strongly related to the physics as nature sees 
it, still quantified using math model definitions (Mach number, turbulence intensity, etc.). 
The practitioner must also know/choose if the flow is unsteady or steady or essentially 
steady and what type of corresponding simulation to choose. The problem definition is 
woefully incomplete, if there is no definition of what type of information must be gleaned 
from the simulations. For example, if an accurate knowledge of lift and drag is required 
at various angles of attack and yaw conditions, such a purpose is best known ahead of 
time. The choice of math model, numerical model and computational model could all 
depend on the specific type of information desired. The turbulence model used for 
attached or mostly attached flow may be different from the model which is best suited for 
massive separation or unsteady flow or vortex breakdown. It is becoming obvious then, 
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that all elements of the simulation hierarchy are interrelated. Another significant issue is 
whether we really know, in depth, the true nature of the flow physics that is associated 
with a particular problem definition. Sometimes the simulation approach is used to try to 
gain insight into the nature of the physics, but while it can be very fruitful, great care is 
needed when probing the perfect with the imperfect or otherwise probing natural 
processes using a model of those processes.  
 

3.2. MATHEMATICAL MODEL  
Most math model choices are generally accepted and uniformly applied. This includes 
the Sutherland or Power law for viscosity and thermal conductivity, the perfect gas 
equation of state, etc. Furthermore, let us assume here that a form of the Navier-Stokes 
equations is appropriate. For turbulent flows, the choice of turbulence models is a 
primary choice to be made, based on the simulation needs. If a turbulence closure can 
be chosen just based on its suitability for modeling certain physical phenomena, it will be 
a very good situation indeed. However, often the practitioner may weigh in the 
robustness of the model in choosing one. The robustness is strongly tied to both the 
model itself and its numerical implementation.  Depending on what model is chosen, the 
corresponding variables (k, ε, etc.) will have to be defined. The problem definition 
choices of Mach number, altitude, turbulence parameters, etc., will have to be converted 
into the corresponding primitive variables (pressure, temperature and velocity 
components), k, ε, etc. The practitioner must also choose the initial and boundary 
conditions that are associated with the math model (or the numerical model, as the case 
may be). For time- accurate simulations, the initial conditions should closely correspond 
to what would occur in nature. For steady-state applications, the choice of initial 
conditions could be for a different purpose, merely to help obtain the steady state faster. 
The practitioners must also choose whether they will employ the “wall function” approach 
or “solve to the wall”. This has a strong relationship to the type of mesh that must be 
generated and used.  
 

3.3. NUMERICAL MODEL 

The numerical approach requires the choice of the primary numerical method(s) and all 
the related parameters. Typically, the practitioner must choose inputs that affect 
numerical dissipation, accuracy (1st or 2nd order, accuracy of the main equations versus 
those of the turbulence closure, etc.), relaxation (and under-relaxation) parameters, 
multigrid control, etc. An important consideration in the choice of method is whether an 
explicit or an implicit type of approach is to be used. This has a strong bearing on 
success depending on the nature of the computational model (near-wall spacing, aspect 
ratio of the mesh cells, etc.).  

4. INTERACTIONS AMONG ELEMENTS OF SIMULATION HIERARCHY  

 
We present now a few examples of such interactions. We recommend, however, that the 
practitioners prepare their own tables and charts of interactions (like drug interactions) 
that pertain to their own operating environment (e.g. the codes that they use). Some of 
these interactions are generic and apply to most situations; however, some may only be 
relevant to certain CFD codes or tools.  
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Solving to the wall implies that a wall grid spacing of Y+ of 0.1 to 1.0 be used. This is an 
obvious interaction between choice of a turbulence modeling approach and the 
computational model (the mesh). The solve-to-the - wall approach can often result in 
large mesh cell aspect ratios in the boundary layer (> 1000 or even > 10000). To 
accurately balance all the terms being modeled with such large aspect ratios, one may 
need to resort to double precision arithmetic (this is also a computational modeling 
choice). A numerical methodology based on an explicit scheme formulation may have a 
major struggle in obtaining a numerical solution on such grids or to obtain it efficiently. 
This is an interaction with the numerical modeling. An implicit relaxation method with 
multigrid treatment that is well implemented may offer good benefits. A code that seems 
to work well for “wall function” meshes may not fare so well on “solve –to-the-wall” grids. 
In some numerical treatments, there is so much error (due to extra-large doses of 
numerical diffusion) that even a mesh spacing corresponding to a Y+ value of 0.1 will not 
lead to an accurate prediction. CFD codes with such treatments may need a finer grid for 
accuracy, further exacerbating the problem of numerical stability and rate of 
convergence. This simple example already illustrates the complexities of the 
interactions. The impact of the human decision- making process is also obvious here.  
 
For the next example we consider our nonlinear (cubic) k-ε model [3]. Such a model can 
be better suited for flows with large streamline curvature and allows for anisotropic 
effects. This model depends more strongly on velocity gradients than a linear k-ε model, 
therefore a stronger requirement for higher mesh quality exists when using the cubic 
closure. The mesh should be sufficiently smooth for the velocity gradients (and not just 
the velocity itself) to be computable with a reasonable level of accuracy and 
smoothness. If it is not possible to construct a mesh of the desired quality (because of 
deficiencies in the available mesh generation tools), then, from a practical point of view, 
a better numerical solution may be possible with a simpler turbulence model on such a 
relatively lesser quality grid. Here the mesh generation possibilities will have a strong 
influence on the choice of the math model. We use this example to illustrate how the 
decision flow is not always one way, from the math model to the numerical model to the 
computational model, but can also flow the other way. In general, Reynolds-stress 
models (the cubic k-ε being an algebraically-specified Reynolds-stress closure) are 
potentially very powerful but to realize their potential, the practitioner must assist by 
providing the appropriate mesh suitable for the model.  
 
We have frequently observed that mesh, often the one suitable for subsonic flow, is 
used, very incorrectly, for a very large range of Mach numbers. Not only is it important to 
consider the outer extent of the computational domain, but also the grid spacing 
requirements in the boundary layer, as they can be vastly different and thus must be 
considered in detail.  
 
As a final topic in this section, we consider the unfortunate use of numerical dissipation 
or artificial ceilings and floors (maximum allowable value or minimum allowable value) to 
mask the bad effects of weaker math models or computational grids or even numerical 
treatments. For example, CFD codes may limit the eddy viscosity that would arise in a 
simulation to an artificially low value. Worse, such limits may be built-in and not obvious 
to the user. Extra-large values of numerical dissipation or reduced order (1st order) 
treatment are often used to mask numerical oscillations that would otherwise appear or 
to mask other numerical instabilities. In the opinion of the authors, it is better to treat 
model deficiencies in each category of the hierarchy by improving the modeling within 
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that category. This paragraph serves then as an introduction to the next topic: principles 
that can help develop good math, numerical, and computational models.  

5. REALIZABILITY RESULTING IN HIGH FIDELITY  

 
Up to this point, we have suggested that a careful consideration of the interactions 
among the math model, the numerical model and the computational model can lead to 
benefits. However, it is also very important for the models themselves to be effective. As 
we saw in the last paragraph of the previous section, if we begin with bad models, more 
bad treatments (e.g. numerical diffusion) are required to compensate for undesirable 
side effects. The infamous GIGO concept (Garbage In, Garbage Out) refers to the fact 
that computers and software can produce unintended, even nonsensical, output when 
the input is inconsistent.   So, the question we have to ask ourselves is: how can one 
develop good math models and, independently, good numerical methods? When these 
are used together with good computational models, quality results can be achieved. 
Formal (mathematical) order of accuracy is sometimes less important than other 
physical constraints of the problem that limit the range of the solution. In complex non-
linear systems one must, therefore, ensure known physical attributes are satisfied by the 
solution. This process is referred to as enforcing Realizability.  
 
Here are some examples of Realizability: negative pressures and temperatures should 
not arise in modeling; negative eddy diffusivities must be avoided. The Schwartz or 
higher-moment inequalities must be obeyed. Unbounded stress components should not 
be present. Singularities from vanishing scale parameters should be carefully treated. 
These constraints are not implied by classical numerical analysis. However, violation of 
any of these Realizability constraints can lead to failure.  
 
There are two approaches to ensuring such Realizability, one good and one bad. In the 
good approach, the modeling is done in such a manner so as to avoid non-Realizable 
behavior. In the bad approach, the non-Realizable behavior will be present in modeling 
but any resulting unacceptable values will be clipped to be within the desired limits or 
excessive numerical dissipation will be applied as a “salve” to salvage the situation. 
Obviously the former approach is more desirable.  
 
We have tried to be true to these principles in our own efforts. In building the turbulence 
models, for example, we ensure that all normal Reynolds stresses are positive, enforce 
the Schwartz inequality (Reynolds shear stresses squared cannot be larger than the 
product of the corresponding normal stresses) and other constraints (time-scale and 
velocity-scale Realizability). Turbulence models embodying such principles will have less 
ad-hoc terms, will misbehave less, will not need strange after-the-fact numerical fixes 
and, most importantly, will yield results that are much closer to physical reality, and 
hence higher fidelity.  
 
At the numerical level, we have non-oscillatory schemes, which avoid spurious 
numerical oscillations. TVD and ENO (Essentially Non-Oscillatory) schemes, which the 
first author helped develop, are examples of such schemes. Early papers on TVD 
methods referred to themselves as “high resolution” schemes, implying second-order 
accuracy (except at maxima and minima and shock waves) but most importantly, these 
schemes avoided numerical oscillations and therefore could capture shock waves with 
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greater fidelity. They also manifested a peculiar property: their nonlinear dissipation 
reduced to zero at stationary shocks leading to zero thickness or one-cell width shocks. 
Hence the term “high resolution” was used to classify them.  
 
Also at the numerical level, we have managed to capture the multidimensional nature of 
real gradients using a multidimensional interpolation scheme. We use an approximate 
Riemann solver that preserves positivity (does not, by itself, produce negative pressures 
or temperatures) and satisfies entropy principle. We have found ways to avoid spurious 
oscillations in the multidimensional interpolation. We have implemented turbulence 
models in a manner that makes them robust: first through embodying Realizability 
principles in the model, and then numerically by avoiding explicit fragments. We have 
found ways to ensure positivity in modeling the terms that represent physical diffusion by 
employing carefully designed discretization in the vicinity of highly skewed cells.  

6. CONCLUSIONS 

 
In summary, the hierarchical elements considered are 
 

 Physics of the problem at hand 

 Mathematical model of the physics 

 Numerical model of the math model 

 Computational model of the numerical model 

 Human in the loop 

 Resulting computational simulation and its relationship (fidelity of representation) 
to the physics being modeled and simulated 

 
All this is rather obvious. However, there is significant benefit in making the effort to 
consciously consider this hierarchy and the interrelationships among the constituent 
elements. We have highlighted in this paper, benefits in the following areas:  
 

 Development of high fidelity simulation techniques and corresponding high fidelity 
computational solutions  

 A framework to learn and adhere to “best practice” techniques (processes) and 
increase productivity for the organization that is using CFD to achieve its design 
or analysis goals  

 A framework or environment for users of CFD tools to learn and improve their 
own skills and become better practitioners 

 A framework that helps support staff to better diagnose problems that arise in the 
use of CFD tools and more efficiently and effective help users. 

 
A hierarchical perspective of various constituent elements of the computational 
simulation process has been presented. The elements and their mutual interactions 
have been discussed through examples. A philosophical framework for the development 
of good mathematical and numerical models has been outlined. These ideas are not just 
concepts, but have been embodied and tested thoroughly in the CFD++ software suite. 
The ideas have helped develop CFD simulation software that is robust, accurate and 
efficient even on massive and highly clustered meshes.  
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