

Time-Dependent Reliability Analysis of Large Systems under Non-Gaussian Loading

by Santosh Patil Zissimos Mourelatos Dimitrios Papadimitriou Vasiliki Tsianika

8th BEFORE REALITY CONFERENCE May 20-23, 2019

Outline

- Background
- Response of a Linear System under Gaussian Loading
- Outline of our Approach
- Random Vibrations of Non-linear Systems under Non-Gaussian Loading
 - ***** Review of PCE-KL-QMC Method
 - Metamodel of Autocorrelation Approach
 - ***** Autocorrelation of Linearized System
 - Autoregressive (AR) Extrapolation to address burn-in period
 - ***** Automotive Truck Example

Conclusions

Background

The response of time-dependent systems is a **random process**

- Time-dependent reliability considers performance through time. Such a design can, among others:
 - ✓ Reduce warranty cost
 - ✓ Increase customer satisfaction
 - ✓ Identify maintenance schedules
- Real systems are large with millions of degrees of freedom DOF (> 5 million)
- Small number of nonlinear components (e.g. active suspension, tires) exist in large vibratory systems along with large linear vibratory subsystems (e.g. trim body).

Design Under Uncertainty

Challenges:

- Quantification of a Input Random Process (Gaussian/Non-Gaussian).
- Calculation of Output Uncertainty (Gaussian/Non-Gaussian).
- Propagation of Uncertainty (Linear/nonlinear Systems).
 - ✤ Reduce the **number of system simulations needed** for TD-RBDO.
 - * Reduce computational **cost of each simulation** for large vibratory systems.

Quantification and Propagation of Uncertainty

Quantification of a Random Process

A zero mean, stationary Gaussian process is fully characterized by its autocorrelation function.

For a non-Gaussian process we need skewness and kurtosis in addition to the autocorrelation function.

8th BEFORE REALITY CONFERENCE

Response of a Linear Vibratory System

and joint up-crossing (v^{++}) rate.

8th BEFORE REALITY CONFERENCE

Definition of Failure

Failure if defined as an event where, response exceeds certain threshold.

05/21/2019

Schematic of TD-RBDO Approach (Simulation-Based)

Component Mode Synthesis (CMS) after partitioning the system into linear and nonlinear substructures for efficient system simulation.

Time

05/21/2019

8th BEFORE REALITY CONFERENCE

9

Metamodel of Output Autocorrelation Function for Random Vibration of Non-Linear Systems

Background: PCE-KL Method

"Characterization" of random process Development of a **stochastic metamodel** for generating **trajectories** of the process

Polynomial Chaos Expansion – Karhunen Loeve Expansion (PCE-KL)

$$Z(t) = \sum_{i=0}^{\infty} b_i(t) \Psi_i(t) = b_0(t) + b_1(t)\xi(t) + b_2(t)(\xi^2(t) - 1) + b_3(t)(\xi^3(t) - 3\xi(t)) + b_4(t)(\xi^4(t) - 6\xi^2(t) + 3) + \cdots$$

b_i: coefficients to be calculated

ξ(t): Standard Normal Process

Define the first 4 "target" moments of non-Gaussian random variable Z

Background: PCE-KL Method

Using orthogonality properties of Hermite polynomials:

 $C_{\xi\xi}(t_1, t_2) = E[\xi(t_1)\xi(t_2)]$ Trajectories of $\xi(t)$ using K-L Expansion

K-L Expansion λ_i : Eigenvalues of $C_{\xi\xi}(t_1, t_2)$ $\xi(t) = \sum_{i=1}^{N} \sqrt{\lambda_i} \cdot f_i(t)$ ξ_i ξ_i : Eigenvalues of $C_{\xi\xi}(t_1, t_2)$ ξ_i : Eigenvectors of $C_{\xi\xi}(t_1, t_2)$ ξ_i : Independent standard normal variables

Realization of ξ_i in <u>N dimensions</u>

Background: PCE-KL-QMC Method

Computational Cost of Quasi Monte Carlo Method

Computational cost increases considerably with increasing simulation length

Metamodel Approach for Autocorrelation Function

- A set of decaying sinusoids is used to approximate the autocorrelation function (inverse Fourier transform of a Gaussian Function).
- > A global Genetic Algorithm fits all parameters.

✓ Small number of system simulations required.
 ✓ Duration of each simulation is short.

No. of Terms - *n* and Optimal Training Length

Develop an initial "fit" using the autocorrelation of the "linearized" System:

$$S_{YY}(\omega) = H(\omega)^2 S_{FF}(\omega)$$

FRF of Linearized System (e.g. linearized at mean)

Inverse Fourier of PSD $S_{YY}(\omega)$ provides the **autocorrelation** of the **linearized system**.

10	Root-Mean-Square
n	Error (RMSE)
1	0.0191
2	0.0103
3	0.0003581
4	0.0003479

8th BEFORE REALITY CONFERENCE

AR Extrapolation to Address Burn-in period

Automotive Truck with Non-Linear Mounts

4.5 Million DOFs

Output Process y(t)

Non-Gaussian displacement at seat attachment point

Input Process F(t)Non-Gaussian force

Characterization of Input Process F(t)

Weibull distribution

Parameters: scale=5, shape=1.2

First 4 statistical moments

Quantity	Quantity Description	
μ_I	Mean	4.7
$m_2 (= \sigma^2)$	Variance	15.5
m_3 / σ^3	Skewness Coefficient	1.5
m_4 / σ^4	Kurtosis Coefficient	6.2

Autocorrelation Function

Create PCE stochastic metamodel for input process and generate trajectories of F(t).

Characterization of Input Process F(t)

Characterization of Input Process F(t)

- For training length of 1 sec, 3
 dominant eigenvalues are needed for
 KL expansion of input process.
- We use a space filling design
 (OSLH) in 3 dimensions to get M space-filled trajectories of input process.
- Burn in Period for this example is 1 seconds. Backward AR
 Extrapolation for additional 1 second is performed to address that

QMC efficiency for moment estimation

# of Sample Pts M	Mean (N)	Std. Dev. (N)	Skewness	Kurtosis
10	4.45	3.8	0.87	2.33
20	4.53	3.61	0.85	2.58
30	4.68	3.53	1.05	3.46
40	4.72	4.19	1.59	5.35
250,000 MCS	4.70	3.94	1.52	6.15
Target	4.70	3.94	1.52	6.24

Characterization of Output Process Y(t)

- Calculate the 4 moments and <u>partial autocorrelation</u> of output displacement process y(t).
- Develop the metamodel of autocorrelation function.

Term No.	Amplitude (N)	Decay constant (N)	Frequency	Phase
1	0.3922	2.4502	373.7885	8.4962
2	0.7091	1.7275	126.8746	5.1885
3	0.7044	1.8044	374.8402	4.4764

Parameters of Metamodel of Output Autocorrelation Function

Moments of Output

Time-Dependent Probability of Failure

- Develop PCE stochastic metamodel for output process Y(t).
- Generate new trajectories of Y(t), using the metamodel to calculate time-dependent probability of failure.

Trajectories of Output

Probability of Failure

Craig-Bampton CMS and Total Cost

N	ю	Substructure	Modal DOFs	Physical DOFs	Total DOFs
1	1	Cab	163	-	-
2	2	Bed	64	-	-
	3	Frame	103	-	-
(0	Residual	_	6	336

4.5 million DOF -> to 336 modal DOFs

Number of simulations required = 40Duration of each simulation = 2 sec.

No.	Substructure	Computational Cost
1	Cab Modal Model	14 min x1
2	Bed Modal Model	2 min x 1
3	Frame Model	3 min x 1
4	Residual Time Integration	2 sec. x 40 = 80 sec.

Non-linear transient simulations needed for **time-integration**

EOM for *i*th Substructure

$\mathbf{m}_i^{\Gamma\Gamma}$	$\mathbf{m}_{i}^{\Gamma\Omega}$	$\left\{ \ddot{\mathbf{u}}_{i}^{\Gamma} \right\}$	$\mathbf{k}_{i}^{\Gamma\Gamma}$	$\mathbf{k}_{i}^{\Gamma\Omega}$	$\left \int \mathbf{u}_{i}^{\Gamma} \right $	$\int \mathbf{f}_i^{\Gamma}$
$\mathbf{m}_{i}^{\Omega\Gamma}$	$\mathbf{m}_{i}^{\Omega\Omega}$	$\left\ \ddot{\mathbf{u}}_{i}^{\Omega}\right\ ^{+}$	$\mathbf{k}_{i}^{\Omega\Gamma}$	$\mathbf{k}_{i}^{\Omega\Omega}$	$\left\{\mathbf{u}_{i}^{\Omega}\right\}^{-}$	$\left[\mathbf{f}_{i}^{\Omega} \right]$

Craig-Bampton transformation using substructure normal modes and constraint modes)

05/21/2019

Summary and Conclusions

- Presented a method for time-dependent reliability analysis of nonlinear systems under non-gaussian loads using a Metamodel of <u>Autocorrelation</u> approach.
- This approach drastically reduces number of system simulations required.
- > **AR Extrapolation** to address the effect of **Burn-in period**.
- CMS to handle non-linear components.

Example demonstrated the accuracy and efficiency of above techniques.

Questions & Answers

THANK YOU