STAMP-CRASH PROCESS: COUPLING OF FORMING AND CRASH SIMULATIONS AT BMW

Dr. Janine Mergel¹, Andreas Ickes¹, Marcel Meder¹, Michael Tryfonidis², Helga Reith¹ ¹BMW Group ²BETA CAE Systems

KEYWORDS –

Mapping in ANSA, crash simulations, sheet metal forming, data management, SDM systems

ABSTRACT

In automotive industry, the accuracy of crash simulations can be considerably improved by accounting for also the manufacturing process of the body-in-white components. To this end, the forming history of deep-drawn body parts is used to enhance the virtual models for both the body in white and the full vehicle. We here present an interlinking approach, the "stamp-crash" process, to systematically connect the engineering of deep-drawing tools with the design and development of the body parts. The stamp-crash process involves the following components:

1) An already existing simulation data management (SDM) system used at BMW to build, mesh, and process the CAE model of the vehicle;

2) An interface to a central database containing all model data as well as the forming results for relevant body parts;

3) An ANSA-based mapping tool to initially transfer the forming history of each individual part to the overall CAE model; and

4) An automatic re-mapping procedure developed in cooperation between BMW and BETA CAE Systems.

Using the same database in both the crash and deep-drawing "worlds" offers several advantages: it allows for version control of all models during the entire design process and is crucial for the automatic re-mapping. this re-mapping accelerates building the CAE model, e.g. by using commonality of body parts or capturing re-meshing. overall, by improving the quality of both crash simulations and strength or stiffness computations, the stamp-crash process accelerates the entire design and development of new vehicles at BMW.