

Ground breaking Simulation Solutions

physics on screen

Non Linear Multi-scale Modeling of Composite Materials using ANSA tools

Eleftherios Tsivolas, Vangelis Palaiokastritis

www.beta-cae.com

Composite Materials Modeling -Engineering challenges

• Multi-Scale Approach

 Manufacturing Process Simulation

 Macro & Micro Structural Analysis

Composite Materials Modeling -Engineering challenges

• Multi-Scale Approach

 Manufacturing Process Simulation

 Macro & Micro Structural Analysis

Composite Materials Modeling -Engineering challenges

• Multi-Scale Approach

 Manufacturing Process Simulation

 Macro & Micro Structural Analysis

Homogenization Tool: Mean Field Homogenization

 Homogenization Methods

Homogenization Material Model **Export for Solvers** • Methods Material Models Solvers Multistep Elastic Epilysis ✓ Mori-Tanaka Nastran Thermo-elastic Voigt Abagus Visco-elastic Reuss ANSYS Elasto-plastic & failure Matrix & Inclusion ✓ Method of Cells ✓ Thermo-elasto- plastic ✓ LS-DYNA properties & failure Radioss Elasto-plastic-damage & failure ✓Pam-Crash ✓ PERMAS Elasto-visco-plastic

& failure

Thermal conductivity

✓OptiStruct

Material Models

 Material Output for multiple solvers

Homogenization Tool: Representative Volume Element (RVE) Mesh Generation

Microstructure: Short fiber Long fiber Sphere Particles Multiple Inclusions Cohesive Interface

•

 FE Homogenization with Epilysis

Molding Analysis Supported Decks:

- I/O Moldex3d and Moldflow files
- Special molding environment
- Solver Entities: Point attributes
 Face & Pipe attributes
 Wizard for pipes
 creation
- Interoperability between decks Map Orientations & Homogenization

Case Study: Geometry – FE Model

- Beam model: Solid mesh 40392 HEXAs Thickness = 1mm
- Subjected into: 3 Point Bending Test
- Aluminium Material: E = 68.9 GPa Rho = 2.7 kg/m³
- Bending Jigs: 3D Rigid Body

Case Study: Calculate Linear Elastic Composite Material

Homogenization		
<u>File</u> <u>C</u> alculate		
Analysis Linear Elasticity		
Method Multi step Homogenization		
Matrix Properties	B Edit Inclusion	8
Elastic-Thermal Plastic Conductivity	Name Carbon_Short_Fiber	
E1 10500. N1 0.395 G	Reinforcement Properties	
E2 0. N2 0. S	Elastic-Thermal Plastic Conductivity	
RH0 1.25 CTE 0. Vm	E1 250000 N1 0.25 G	_
		Ë
	E2 0. N2 0. Set Isotropic	
Mechanical Thermal	RH0 1.75 CTE 0. CTE2	0.
Loading type General 3D		
E11 E22 E33 E	Inclusions Shape	
2E12 2E13 2E22	Short Fiber	•
Inclusions list	al360. a230. a3	30.
Name Enabled Vf	Inclusions Orientation	
Carbon_Short_Fiber 🗹 0.3		
Add Edit	• fixed phi 0. theta 90.	
	O tensor all 0.8 al2 0. al3	0.
Plane stress	a22 0.1 a23	0.
Inclusions info	a33	0.1
E1 = 250000 N1 = 0.25 BHO = 1.75e+00 CTE = 0.00e+00 C		
SY = 250, K = 2000, n = 0.4		ancel
OK Results Make Material RVE Options	Cancel	

- Target Modulus
 E_{alumin} = 68.9 GPa
 Rho_{alumin} = 2.7 kg/m³
- Constituents
 Resin Epoxy:
 E_{matrix} = 10.5 GPa
 Rho_{matrix} = 1.25 kg/m³
- Short Carbon Fibers: $E_{fiber} = 250 \text{ GPa}$ $Rho_{fiber} = 1.75 \text{ kg/m}^3$ aspect ratio = 12 $v_f = 30\%$
- Composite's Properties
 E_{1comp} = 56.6 GPa
 Rho_{comp} = 1.4 kg/m³

Case Study: Calculate Linear Elastic Composite Material

- Target Modulus
 E_{alumin} = 68.9 GPa
 Rho_{alumin} = 2.7 kg/m³
- Constituents
 Resin Epoxy:
 E_{matrix} = 10.5 GPa
 Rho_{matrix} = 1.25 kg/m³
- Short Carbon Fibers: $E_{fiber} = 250 \text{ GPa}$ $Rho_{fiber} = 1.75 \text{ kg/m}^3$ aspect ratio = 12 $v_f = 30\%$
- Composite's Properties
 E_{1comp} = 56.6 GPa
 Rho_{comp} = 1.4 kg/m³

Case Study: Calculate Linear Elastic Composite Material

NO	- NO		ES -					
MID	Elasticity			Plasticity (Rate Ir	ndep.)	Plastici	ty (Rate Dep.)	RT
2		ELASTIC		• PLAS	STIC	•	CREEP	-
*DENSITY	DEP_DENS	DENS						
YES 🔹	NO	• 1.4						
*EXPANSION	I							
NO	•							
YES •	MODULI		N0	ELASTIC_TYPE	T T			
YES •	E2	E3	NO V12	ELASTIC_TYPE ENG CONS v13	v23	G12	G13	
YES • 56636.154	MODULI E2 7 19322.236	E3 6 19322.2	DEP_ELAST NO v12 366 .3634	ELASTIC_TYPE ENG CONS v13 68355 .36346835	sT ▼ v23	G12 679 6729.7	G13 75802 6729.75	802
YES • E1 56636.154 G23	MODULI E2 7 19322.236	E3 6 19322.2	DEP_ELAST NO v12 366 .3634	ELASTIC_TYPE	v23	G12 .679 6729.7	G13 75802 6729.75	802
YES • E1 56636,154 6289,0876	MODULI E2 7 19322.236	E3 6 19322.2	DEP_ELAST NO V12 366 .3634	ELASTIC_TYPE - ENG CONS v13 68355 .36346835	v23 55 .53617	G12 .679 (6729.7	G13 75802 6729.75	802
YES • E1 • 56636.154 6239.0876	MODULI E2 7 19322.236	E3 6 [19322.2	DEP_ELAST NO v12 366 .3634	ELASTIC_TYPE	v23 55 536171	G12 .679 [6729.7	G13 75802 6729.75	802
YES • E1 • 56636.154 6289.0876	MODULI E2 .7 19322.236 .3 .3 	E3 6 19322.2 d_Composite	DEP_ELAST NO v12 366 .3634	ELASTIC_TYPE	v23 55 [.53617:	G12 .679 6729.7	G13 75802 6729.75	802
YES • E1 • 56636.154 6289.0876 arbon_Epox 0K	MODULI E2 7 19322.236 3	E3 6 19322.2 d_Composite	DEP_ELAST NO v12 366 .3634	ELASTIC_TYPE	5T •) V23 55 [.53617]	G12 .679 (6729.7	G13 75802 [6729.75	802) Ca

- Target Modulus E_{alumin} = 68.9 GPa Rho_{alumin} = 2.7 kg/m³
- Constituents
 Resin Epoxy:
 E_{matrix} = 10.5 GPa
 Rho_{matrix} = 1.25 kg/m³

Short Carbon Fibers: $E_{fiber} = 250 \text{ GPa}$ $Rho_{fiber} = 1.75 \text{ kg/m}^3$ aspect ratio = 12 $v_f = 30\%$

• Composite's Properties E_{1comp} = 56.6 GPa Rho_{comp} = 1.4 kg/m³

Case Study: Setup Moldex3D Analysis and Mapping

	Assign Doint Attribute: Molt Entropos	File forma
	Assign Point Attribute. Meit Entrance	⊖ SHEL
		SOLIC
		Output Op
		Output
		Pre Outpu
		Pre fund
		Pre fund
		Post Outp
	Post fur	
	Post fur	
	Pre-Ou	
	S-KD-	Templat
		Do n
		ОК

🚯 MOLDEX3D Output Parameters 🛛 🗷				
File format Options				
SOLID Fast Cool				
Output Options				
Output Model 🜩				
Pre Output Script				
Pre func name				
Pre func args				
Post Output Script				
Bact func nome				
Post func args				
Pro Output Model Check				
Template:				
				
Do not output if error occurs				
OK Cancel				

- Setup Point Attributes
 Melt Entrance
- Export Mesh for Moldex3D
- Run molding Analysis Get the material orientations file (*.o2d)
- Map Orientations

Case Study: Setup Moldex3D Analysis and Mapping

Map Results		×
Name: Map_Orientations_f	from_Moldex	status:
Options Validation	Align Mesh User Script Units	Stamping
Source		
HINGLDEX2D	e Name	OUS Part Ori MDVProject2010022701 ipp
	IDXFIOJECIZOI90327/Report/RunoI/ABA	
Isotropy threshold	Isotropic PSHELL	Isotropic PSOLID
] []	
Map orientation pro	ibabilities	
Mappings		
Enable Type	Interpolation Method Use C	osest Extrapolate Moldex3d o2d file name
Material Orien	tation RBF	Z:/user_dirs/e.palaiokastritis/PROJECTS
•		
Mapping Options ———		
Search Distance	x y	z
Lavg	0.	0.
connectivity sea	arch	
#2 Pa	issThrough	÷
✔ Re-orient target me	esh to match source mesh orientation	Laminate Mapping Options
Ignore areas with m	nismatched orientation	
 Homogenization wit 	th orientation tensor	Homogenization options
Comment		
OK		Cancel
VI		Cancer

- Setup Point Attributes Melt Entrance
- Export Mesh for Moldex3D
- Run molding Analysis Get the material orientations file (*.o2d)
- Map Orientations

Case Study: Setup Moldex3D Analysis and Mapping

- Setup Point Attributes Melt Entrance
- Export Mesh for Moldex3D
- Run molding Analysis Get the material orientations file (*.o2d)
- Map Orientations

 Solve with Abaqus: Linear Elastic Material, Non Linear Geometry

Isolate element with Max Strain: Use this Strain Tensor for calculation of the Elasto-plastic material model

Case Study: Solve Linear Elastic Model

- Solve with Abaqus: Linear Elastic Material, Non Linear Geometry
- Isolate element with Max Strain: Use this Strain Tensor for calculation of the Elasto-plastic material model

Case Study: Calculate the Elasto-Plastic Composite Material

Homogenization				X
<u>F</u> ile <u>C</u> alculate				
Analysis Elasto-plasticity				\$
Method Multi step Homogenization				\$
Matrix Properties				
Elastic-Thermal Plastic Dama	Failure	Viscous Conductivity		
		0.205		
		0.395		
		0.	Set Is	otropic
RH0 1.3		0.]	Vm	1.
Loading				
Mechanical Thermal				
Loading type General 3D				÷
E11 0.01678	74929 E22	0.0046173073	3 E33	0.0146624545
2E12 8.10032806344	285E-5 2E13	0.0065503604	4 2E23	0.0038473822
Loading Time	1.			
nclusions list				
Carbon iso V 0.3				
Add		Edit	Del	ete
				total 1
Plane stress				
Inclusions info				
0K Result	5	Make Material	VE Options	Cancel

- Homogenization Tool Elasto-plasticity Strain Tensor for Loading
- Homogenized Material's behaviour: Elasto-plastic stressstrain curve
- Create the material entity: Abaqus material with *PLASTIC

Case Study: Calculate the Elasto-Plastic Composite Material

B Homogenization	(X)	
<u>F</u> ile <u>C</u> alculate		
Analysis Elasto-plasticity	y	
Mathad Multi stan Llama	B Effective Property	8
Method Multi step Homo	Mechanical Thermal Plastic	
Matrix Properties ———	Choose curve type	
Elastic-Thermal Pla:	at VonMises 🗘 Strain11	Add curve Export curve
El	Macro scale-Composite	\$
E2		
RHO		
	2 0.000067 2.128659 400 -	
	3 0.000134 4.257318	
Loading	4 0.000201 6.385977	
Mechanical Therma	a 6 0.000336 10.643295	
	7 0.000403 12.771954	
Loading type General	8 0.00047 14.900613	
	9 0.00053 17.02972 100 -	
	11 0.000671 21.28659	
2E12 8.10	0]	
Loading Time	- 13 0.000806 25.543907 14 0.00072 27.672566 0 0 0.005 0.01	0.015 0.02
	Strain	
Inclusions list	Homogenization results —	
Name Enabled	Homogenized stiffness tensor	
Carbon_iso 🖌	54105.8948564917 23337.1329013565 21464.5164159488 -150.91508852875 1478.39522464204 1345.29970761151	
	23337.1329013565 33412.7519060577 19797.7361887552 -58.141059621555 296.035303099402 449.063229754083 21464.516415948 19797.7361887552 2170.4556052256 -41.97614102063 356.28564341005 144.513187559066	
Add	150.9150852875 -58.141059621555 -41.97614102063 6448.09150768736 78.7821418267711 88.6657693294138	
	1476.3952496204 296.00330308492 356.20304341005 /0.762141620/11 /5/0.0822/1387/9 37774254384993 7704.89213780326 1345.29970761151 449.063229754083 144.53138759866 88.6657693294138 73.772254384993 7704.89213780326	
Diana atraas	-	
Plane stress		
Inclusions info		
OK	Results Make Material RVE Options Cancel	

- Homogenization Tool
 Elasto-plasticity
 Strain Tensor for
 Loading
- Homogenized Material's behaviour: Elasto-plastic stressstrain curve
- Create the material entity: Abaqus material with *PLASTIC

Case Study: Calculate the Elasto-Plastic Composite Material

D Homogenization	
<u>File</u> <u>C</u> alculate	
Analysis Elasto-plasticity	
Method Multi step Homogenization	
Matrix Propert'	อ
Elastic-Ther	
E1 Carbon_Epoxy_Homogenized_Composite_PLASTIC	
E2 FROZEN_ID FROZEN_DELETE DEFINED	
RHO NO VES V	
Loading — PLASTIC HARDENING RATE	
Mechanical YES VISOTROPIC V NO V	
Loading type DATA TABLE PLAST 3	
E11 *POTENTIAL	
2E12 NO •	
Loading Tim *SHEAR FAILURE	
Name Carbon_Epoxy_Homogenized_Composite_PLASTIC	
OK ColorEdit Cancel	
	2
Plane stress	
Inclusions info	
OK Results Make Material RVE Options Cancel	

- Homogenization Tool Elasto-plasticity Strain Tensor for Loading
- Homogenized Material's behaviour: Elasto-plastic stressstrain curve
- Create the material entity: Abaqus material with *PLASTIC

Case Study: Solve Plastic Model

- Solve with Abaqus: Elasto-plastic Material, Non Linear Geometry
- Aluminium vs CFRP:
 MaxStress_{alum} = 327 MPa
 MaxStress_{comp}= 438 MPa
 Weight Reduction ≅ 48%
- Isolate element with Max Strain : Use this strain in the RVE Model

Case Study: Solve Plastic Model

- Solve with Abaqus: Elasto-plastic Material, Non Linear Geometry
- Aluminium vs CFRP: MaxStress_{alum} = 327 MPa MaxStress_{comp}= 438 MPa Weight Reduction ≅ 48%
- Isolate element with Max Strain : Use this strain in the RVE Model

Case Study: RVE Model - Analysis

- RVE Mesh Generation: Contacts at the interface of fiber-matrix
- Subject it to the strain loading
- Examine the behavior of the interface Debonding Fiber-pull out

Case Study: RVE Model - Analysis

- RVE Mesh Generation: Contacts at the interface of fiber-matrix
- Subject it to the strain loading
- Examine the behavior of the interface Debonding Fiber-pull out

Bridge Multi-scale Modeling, Manufacturing Simulation, Structural Analysis

> Solutions provided in the multi-disciplinary environment of ANSA

Facilitate material design process

Automation capabilities with ANSA API.

Stay connected