Efficient watertight preparation tools & methods for CFD meshing at Groupe PSA

Nikolaos Batsaris BETA CAE Systems SA

Gaël Roy Groupe PSA

physics on screen

CFD model preparation cycle at Groupe PSA

*modeling work performed by Tech Center Morocco

CAD Design

Watertight preparation

CFD Analysis

Watertight Preparation Challenges

- Incorrect translation data
- Poor CAD description TOPO errors
- De-featuring of complex parts
- Isolate exterior surfaces
- Low automation level
- Other...

360hr

Reduce CFD mesh generation turnaround times

Watertight preparation challenges

Modeling process requirements

Reduce workload by deleting symmetry parts

Identify Similar components

Isolate>Similar Groups – Key features

- Automatic identification of similar components
- ✓ Preview of matching groups
- ✓ User defined
 Similarity tolerance

De-featuring complex parts

Feature Manager – Key features

- ✓ Automatic tool for identification of features (2D/3D holes, fillets, stamps etc)
- ✓ Customized Mesh treatment

Challenges in PreWrapping process

ANSA Task Manager - PreWrap Template

Task Manager			
Tasks 🔪 🕨		2	
Root		Type 🔳 🔽 🕶	
- 🗆 😫	Set Current View mode GEO&FE	User Script	
- 🗆 😫	Bring Entire db to visible	User Script	
- 🗆	STL Spac ng	User Script	
- 🗆	Merge PIDs with Same Color	User Script	
- 🗆 🗳	Merge PIDs of Similar Components	User Script	
- 🗆 👹	Remove Double Components	User Script	
- 🗆 🖨	Fill holes on Geometry	User Script	
- 🗆 👹	Delete Small Volumes	User Script	
- 🗆 🚳	Omit Meshing Internal Parts	User Script	
- 🗆 👹	Remove Logos AUTO	User Script	
- 🗆 😫	Fix Unchecked faces	User Script	
- 🗆 👹	Generate STL Mesh	User Script	
- 🗆 😫	Fill FeatureLine holes	User Script	
- 🗌 🚳	Release Shell Elements	User Script	
- 🗆 😫	Delete Geometry & Compress	User Script	
- 🗆 🚳	Fix Orientation	User Script	
	Save As	User Script	

Size: 2.5GB

PID's: 190 Conn Groups: 645 Shells: 7mil

Size: 350MB

Automation for Prewrapping process

CFD Script Buttons

User Script Buttons

Geometry

TOOLS_TOPO	CreateDomain	
IsolateFaces	SplitCurvaturePeaks	
TOOLS_MESH	AdvancedLayersParameters	
ConnectSTLPerProperty	FixLayersProblematicAreas	
IsolateNormalVector	LatticeBoltzmannVRzone	
PreWrap	ResetMacros	
SetQualityCriteria	SplitQuads	
TOOLS_GENERAL	CheckPIDList	
GenerateChecksReport	MergePIDs	
MergeSmallPIDAreas	ORinXYZ	
RideHeightSetUp	IsolateLongPidNames	

Visualization of Octree entity

All new Octree algorithm

- ✓ Visualization of Octree along Structure assembly
- ✓ Easy-to-handle cut planes on both Octree and Structure
- ✓ Estimation of total shell elements during Visualize stage

Size plot on Octree entity

All new Octree algorithm

✓ Preview of size length on the Octree

Identification of Void Volumes

moteur-non-confi_Engine4script.ansa.gz, Current Part: 9804379480

All new Octree algorithm

 ✓ Easy identification of Void volumes (no Octree intrusion)

Highlight high resolutions areas

moteur-non-confi_Engine4script.ansa.gz, Current Part: 9804379480 × Intersected × Void × Pruned Volume 1 (est. shell elements: 1.4e+07) > 5. 4.85 4.7 4.55 4.4 4.25 4.1 3.95 3.8 3.65 3.5 3.35 Shell 3.2 quads 3.05 2.9 7045990 trias 2.75 total 7045990 2.6 2.45 2.3 2.15 2 1.85 1.7 1.55 1.4 1.25 1.1 0.95 0.8 < 0.5 No Value Size plot on Skin of Structure

All new Octree algorithm

 ✓ Easy identification of refinement zones across proximities

All new Octree algorithm

All new Octree algorithm

✓ Isolation of leaked properties/areas

Leak detection

All new Octree algorithm

✓ Isolation of leaked properties/areas

Tubes & Wires Mesh Generator

TubesWires user script button

- Automatic tool for shell mesh generation
- Available for quad/ortho tria shell type
- Automatic assignment of element length based on distortion angle

Middle Surface Extraction

Mid.Surface>Skin – Key features

- Process acceleration up to 70% through execution in batch process
- ✓ Generation of report for failed parts (casted, topo problems)

Methodology steps for intersection at FE-mod

Methodology steps before panel Connection

- 1. Extract Mid.Surface from Solid thickness
- 2. De-featuring of intense features
- 3. Automatic closure of holes
- 4. Batchmeshing of panels (Fillet treatment etc)

Fusing gaps of Skin parts – demo case

- Automatic tool with acceleration of 90% of watertight closure compared to Geometry operations
- ✓ Preservation of all geometrical features of underlying surfaces

Fusing gaps of Skin parts – demo case

- Automatic tool with acceleration of 90% of watertight closure compared to Geometry operations
- ✓ Preservation of all geometrical features of underlying surfaces

Fusing gaps of Skin parts – demo case

- Automatic tool with acceleration of 90% of watertight closure compared to Geometry operations
- ✓ Preservation of all geometrical features of underlying surfaces

- Automatic tool with acceleration of 90% of watertight closure compared to Geometry operations
- ✓ Preservation of all geometrical features of underlying surfaces

- Automatic tool with acceleration of 90% of watertight closure compared to Geometry operations
- Preservation of all geometrical features of underlying surfaces

- Automatic tool with acceleration of 90% of watertight closure compared to Geometry operations
- Preservation of all geometrical features of underlying surfaces

- Automatic tool with acceleration of 90% of watertight closure compared to Geometry operations
- ✓ Preservation of all geometrical features of underlying surfaces

- Automatic tool with acceleration of 90% of watertight closure compared to Geometry operations
- ✓ Preservation of all geometrical features of underlying surfaces

- Automatic tool with acceleration of 90% of watertight closure compared to Geometry operations
- Preservation of all geometrical features of underlying surfaces

- Automatic tool with acceleration of 90% of watertight closure compared to Geometry operations
- ✓ Preservation of all geometrical features of underlying surfaces

Volume meshing of Solid Components

Intersect Solid– Key features

 ✓ Applications for thermal simulations

Verification of resulting watertight mesh

S.Graph – Key features

 ✓ Direct comparison between different ANSA models

Target performance goals

New Methodology – Key features

- ✓ Improved turnaround processing times
- ✓ More Consistent Quality
- Enable users with less experience to build complex models
- ✓ High level of automation and modeling standardization – ANSA scripting

Stay connected