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ABSTRACT 

A probabilistic analysis is presented for studying the variation effects on the main bearing 
performance of an I.C. engine system, under structural dynamic conditions. The analysis is 
based on surrogate models (metamodels), which are developed using the kriging method. 
The metamodels provide an efficient and accurate substitute to the actual engine bearing 
simulation models. The bearing performance is based on a comprehensive engine system 
dynamic analysis which couples the flexible crankshaft and block dynamics with a detailed 
main bearing elastohydrodynamic analysis. The clearance of all main bearings and the oil 
viscosity comprise the random design variables. Probabilistic analyses are performed to 
calculate the mean, standard deviation and probability density function of the bearing 
performance measures. A Reliability-Based Design Optimization (RBDO) study is also 
conducted for optimizing the main bearing performance under uncertainty. Results from a V6 
engine are presented. 
 
keywords: I.C. engines, crankshaft, main bearing elastohydrodynamic analysis, engine 
system dynamics, surrogate modeling, design under uncertainty, reliability-based design 
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1. INTRODUCTION 

 This paper presents a probabilistic analysis of the main bearing lubrication 
performance of an operating internal combustion engine. Surrogate models (metamodels) 
are developed for critical lubrication performance measures based on a detailed dynamic 
engine simulation solver which couples the structural dynamics of the crankshaft and block 
with detailed main bearing elastohydrodynamic behavior. The Kriging method [1] is used to 
generate the metamodels based on a limited number of sample points. Probabilistic analyses 
are first performed to calculate the main bearing statistical performance in terms of the mean, 
standard deviation and probability density function of defined bearing performance 
measures. Subsequently, a probabilistic sensitivity analysis is described for identifying the 
important random variables. Finally, a Reliability-Based Design Optimization (RBDO) [2,3] 
study is conducted for optimizing the main bearing performance under uncertainty and 
results from a V6 engine are presented. 

A significant amount of work in the area of elastohydrodynamic (EHD) analysis of 
connecting rod bearings has been reported in the literature.  An integrated system level 
operating V6 engine simulation model, consisting of flexible crankshaft and engine block 
dynamics model coupled by an efficient elastohydrodynamic bearing lubrication solver has 
been presented in [4,5]. A detailed coupling of the crankshaft rigid and flexible body 
dynamics [6] was used. The work in [4,5] is employed in this paper for calculating the 
performance measures used in the metamodel generation.  

An operating V6 engine represents a complicated non-linear system which is affected 
by variation in manufacturing processes, operating conditions, material properties, etc.  For 
this study, variability is introduced in some engine design variables and a probabilistic 
analysis is preformed for the main bearing performance. The clearance at each main bearing 
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and the oil viscosity comprise the random variables. All random variables are assumed 
normally distributed. The maximum oil film pressure and the percentage of time (the time 
ratio) within each cycle that a bearing operates with film thickness lower than a user defined 
threshold value are defined as the performance measures. Eight performance measures are 
considered. A probabilistic sensitivity analysis is also performed for identifying the most 
important design variables and for determining the degree to which these design variables 
influence the performance.   
 Reliability-Based Design Optimization (RBDO) [2,3] provides an optimum solution in 
the presence of uncertainty. A mean performance measure is usually optimized subject to 
the probability of satisfying a constraint being greater than a prescribed reliability level. 
Deterministic optimal designs that are obtained without considering uncertainty are usually 
unreliable. In contrast, input variation is fully accounted for in RBDO through probability 
distributions which describe the stochastic nature of design variables and model parameters 
[2,3,7,8]. In this paper, an RBDO study of the main bearing lubrication performance is 
presented based on a newly developed single-loop RBDO algorithm [8]. 
 
2. DEVELOPMENT OF A SYSTEM-LEVEL ENGINE BEARING SIMULATION MODEL  

 The integrated system-level engine bearing simulation model developed in [4-6] is 
used. This model consists of a flexible crankshaft model and a flexible engine block model 
connected by a detailed elastohydrodynamic lubrication model. A brief description is given in 
this section.  

The Craig-Bampton method [9] is employed for reducing the physical Degrees of 
Freedom (DOF) for both the crankshaft and the engine block. The reduced dynamic 
equations of motion are expressed as 
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where M , C and K  are the reduced mass, damping and stiffness matrices 

respectively, and F  is the modal force vector. The superscripts “b” and “c” denote the 
engine block and crankshaft, respectively. Details are given in [4,6]. 

The flexible crankshaft and flexible block are interacting through a set of distributed 
nonlinear springs and dampers which are represented by a set of stiffness and damping 
matrices for each bearing. The stiffness and damping matrices are determined through a 
detailed lubrication model [5].  
 The lubricating oil film pressure distribution for each journal bearing is described by 
the following Reynolds equation, 
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where ),,( tzxPP  is the oil film hydrodynamic pressure and ),,( tzxhh  is the lubricant film 
thickness. Figure 1 shows the used notation. Eq. (2) is discretized and solved numerically for 
the hydrodynamic pressure field subject to an imposed known pressure at the two bearing 
ends and along the oil grooves. The Reynolds cavitation condition is used to account for oil 
cavitation. 
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Figure 1. Journal bearing notation 

 
 A linear perturbation approach is used to solve Eq. (2). At each time step, the film 
thickness and squeeze film thickness distributions are assumed equal to += 0hh  and 

0hh , respectively, where oh  and oh  are the distributions from the previous time step 
and  and  are their corresponding perturbations. In this case, the pressure distribution is 
approximated as 
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where the terms h
P

K ][  and h
P

C ][  constitute the oil film stiffness and damping matrices, 

respectively.  
 Under the assumption of small perturbation values for  and , Eq. (2) yields the 
following perturbation equations [4] 
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Equations (4), (5) and (6) constitute the governing equations for the hydrodynamic oil 
film pressure distribution, stiffness matrix, and damping matrix, respectively. They are all 
solved numerically using a finite difference method. Details can be found in [4,5]. 

If the oil film domain is discretized with N nodes, the explicit form of the stiffness 
matrix is  
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A similar expression holds for the damping matrix C . The ij element of the stiffness 
(damping) matrix represents the pressure change in node i due to a unit oil film thickness 
(squeeze film velocity) change at node j. The size of the fully populated oil film stiffness and 
damping matrices is large in order to accurately capture the highly nonlinear oil film pressure 
distribution, particularly for high journal eccentricity and journal misalignment conditions. For 
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computational efficiency reasons, a diagonalization procedure of the oil film stiffness and 
damping matrices has been implemented [5]. The oil film stiffness and damping matrices are 
used in the system level equations between the crankshaft and the block. 
 For the solution of Eqs (4) through (6), the oil film thickness distribution tzxh ,,  is 
needed. It is derived as a function of the generalized coordinates of the block bx  and the 
crankshaft cx  as  

{ } [ ]{ }bbcc xTxTctzxh ),,(               (8) 
where cT  and bT  are appropriate transformation matrices [4]. The magnitude of the 
interaction forces {Q} created between the flexible block and the flexible crankshaft, is a 
function of the oil film thickness (Eq. (8)) and the stiffness (Eq. (7)) and damping matrices. 
These interaction forces provide the coupling mechanism between the two components. 
 In general, the system of reduced dynamic equations for the combined crankshaft 
and block are written as  

{ } [ ]{ } [ ]{ } { } { }QQqKqCqM e                              (9) 

where q are the generalized coordinates. The reduced matrices M , C  and K , and the 
reduced generalized external forces vector eQ  are given in [9]. The expression for the 
reduced vector Q  of the lubrication interaction forces, is provided in [4]. 
 The nonlinear system of reduced Eqs (9) is solved in the time domain using a 
modified Newmark method for time integration, which includes a Newton-Raphson iteration 
within each time step. Details for the scheme selection can be found in [4]. An operating V6 
engine is analyzed by employing the outlined engine dynamic simulation model. Figure 2 
shows the used finite element model of the engine block and crankshaft and the combustion 
pressure. 

 
Figure 2. Crankshaft and block FE mesh and cylinder pressure 

 
3. METAMODEL DEVELOPMENT AND VALIDATION 

 Metamodels have been developed for selected bearing performance measures of an 
operating V6 engine. The system-level engine dynamic solver of the previous section was 
employed for computing the performance measures at all used sample points. The operating 
V6 engine represents a typical system-level automotive application. It is a highly non-linear 
and complicated system, which involves a large number of degrees of freedom (DOF).  

The maximum oil pressure over a cycle is crucial in selecting bearing materials with 
high enough fatigue resistance for protecting the bearing against failure under an overlay 
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fatigue mode and is a critical indicator of the bearing capacity. For this reason, four of the 
chosen performance measures (press1, press2, press3, and press4) are the maximum oil 
pressure over a cycle at each main bearing. The percentage of time (time ratio) within each 
cycle that a bearing operates with a lower film thickness than a user defined threshold 
constitutes the other four performance measures ratio 1 , ratio 2 , ratio 3 , and ratio 4 . This time 
ratio indicates the severity of the bearing working condition. Eight metamodels have been 
developed for the defined performance measures. The initial clearance between the 
crankshaft and each bearing (C1, C2, C3, C4) and the oil viscosity (VIS) comprise the five 
random variables which are assumed to be normally distributed and uncorrelated. 
 The engine dynamic solver is computationally intensive. A single run of the system-
level engine simulation requires 7 hours on a SUN workstation or 45 minutes on a high 
speed SGI supercomputer. The required computational time therefore, makes a probabilistic 
analysis practically infeasible if the engine system model is used directly. However, the 
metamodels make the probabilistic analysis feasible since they significantly reduce the 
computational time to evaluate the performance measures for a given set of random 
variables. The Kriging method [1] is used to create the metamodels.  

 Table 1 shows the utilized mean values and standard deviations for all five random 
variables. Their ranges are representative for industrial applications. An Optimal Symmetric 
Latin Hypercube (OSLH) algorithm [10] is employed for constructing high quality metamodels 
with a relatively small number of samples. 

 
Table 1. Definition of random variables for the V6 engine application 

 

 Mean (µ) Minimum Maximum 
Standard 

Deviation (σ) 

Coefficient 

of Variation 

C1(µm) 30 15 45 5 16.67% 

C2(µm) 30 15 45 5 16.67% 

C3(µm) 30 15 45 5 16.67% 

C4(µm) 30 15 45 5 16.67% 

VIS(Pa.s) 0.01 0.0058 0.0142 0.0014 14% 

  
   A data set consisting of 200 OSLH sample data points is employed.  The engine 
solver is used for computing the values for the performance variables at all 200 sample 
points. Collecting data for the 200 sample points takes about 130 CPU hours of simulation on 
an SGI supercomputer. The accuracy of the developed metamodels has been validated.   
 Figure 3 shows the PDF of the press 3  performance measure, calculated with the 
Monte Carlo Simulation (MCS) method. The PDF demonstrates a non-normal type of 
distribution. Because the V6 engine is a highly non-linear system, the random distribution of 
press3 is not normal, although the input random variables are assumed normal and 
uncorrelated. Similar non-normal behavior is observed for the other performance measures. 
The developed metamodels are used to perform probabilistic analyses for the operating V6 
engine, efficiently. A sensitivity analysis based on Monte Carlo sampling and a Reliability-
Based Design Optimization (RBDO) study, are presented next. 
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Figure 3. PDF of performance measure press3 

 

4. PROBABILISTIC SENSITIVITY ANALYSIS 

Probabilistic sensitivity analysis gives the sensitivity of probability of failure fP  with respect to 
the mean and standard deviation of the input random variables. In probabilistic analysis, a 
performance function (or performance measure) is defined as 
y (X) = y(X 1 , X 2 ,…, X d ) where X ={X 1 , X 2 ,…, X d } T  is the vector of d random variables.  A 
limit state function g (X) = y (X) - 0y = 0 where 0y  is a particular value of y, separates the 
performance space into a failure region [g 0] and a safe region [g>0]. Given the joint 
probability density function (PDF), f x (X),  the probability of failure is  

fP (y< 0y )= 
Ω

... f x (X) d X              (10) 

where denotes the failure region 0g . The probability of failure can be interpreted as the 
probability of violating a performance measure. 
 Two dimensionless probabilistic sensitivity coefficients have been proposed [11]; the 
mean sensitivity coefficient, i

S , and the standard-deviation sensitivity coefficient, i
S . They 

are defined as  
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where i  and i  are the mean and standard deviation of random variable iX . i
S and 

i
S are the nondimensional sensitivity measures of fP  with respect to the mean and 

standard deviation respectively, for random variable iX . The probability sensitivity 
coefficients can be positive, negative, or of zero value. A large magnitude sensitivity 
coefficient indicates that the corresponding random variable is important. 

The sensitivity coefficients of Eqs (11) and (12) are employed in the dynamic analysis 
of the operating V6 engine to determine the sensitivity of the performance measures with 
respect to the mean and standard deviation of each input random variable. The five random 
variables C1, C2, C3, C4 and VIS are assumed normally distributed and uncorrelated. A large 
number of samples is generated and the corresponding performance measures are 
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evaluated using the metamodels. The random variables C3 and VIS have been identified as 
the most important ones. 
 
5. RELIABILITY-BASED DESIGN OPTIMIZATION OF MAIN BEARING PERFORMANCE 
FOR A V6 ENGINE 

 In deterministic design we assume that there is no uncertainty in the design variables 
and/or modeling parameters. Therefore, there is no variability in the simulation outputs. 
However, there exists inherent input and parameter variation that results in output variation. 
Deterministic optimization typically yields optimal designs that are pushed to the limits of 
design constraint boundaries, leaving little or no room for tolerances (uncertainty) in 
manufacturing imperfections, modeling and design variables. Therefore, deterministic optimal 
designs that are obtained without taking into account uncertainty are usually unreliable. Input 
variation is fully accounted for in Reliability-Based Design Optimization (RBDO) [2,3]. 
Probability distributions describe the stochastic nature of the design variables and model 
parameters. Variations are represented by standard deviations (typically assumed to be 
constant) and a mean performance measure is optimized subject to probabilistic constraints. 
 
5.1. OVERVIEW OF RELIABILITY-BASED DESIGN OPTIMIZATION (RBDO) METHODS 

 A deterministic optimization problem is converted to a probabilistic optimization or 
RBDO, problem if the inequality constraints of the former are satisfied probabilistically. In 
such a case, the probability of satisfying an inequality constraint must be greater than a 
prescribed reliability level which is usually very high. A typical RBDO problem is then 
formulated as 

                  
X

f  

          s.t.   niRGP i ,...,2,10,, PXd ,   ni ,...,2,1                    (13) 
                  UL ddd   
                  LX 
where kRd is the vector of deterministic design variables, mRX is the vector of random 
design variables, qRP is the vector of random and deterministic design parameters, f  
is the objective function and n, k, m and q are the number of constraints, deterministic design 
variables, random design variables and design parameters, respectively. According to the 
used notation, a bold letter indicates a vector, an upper case letter indicates a random 
variable or random parameter and a lower case letter indicates a realization of a random 
variable or random parameter. The actual reliability level for the ith deterministic constraint  is  

   nipR
ifi ,...,2,11 ,           (14) 

where             [fPp       (15) 
is the target probability of violating the ith deterministic constraint which is usually very small. 
Note that in the RBDO formulation of Eq. (13) the design variables include only the means of 
the random variables. The target probability of failure fp  is usually approximated by the 
following first-order relation 

                     tfp −Φ≈             (16) 

where t  is the target reliability index and  is the standard normal cumulative distribution 
function.  
 Problem (13) can be solved using two nested optimization loops (double-loop RBDO 
method); the design optimization loop (outer) and the reliability assessment loop (inner). The 
latter is needed for the evaluation of each probabilistic constraint in Eq. (13). For this reason, 
the double-loop RBDO method is computationally very expensive and therefore, almost 
impractical for large-scale design problems. There are two different methods for the reliability 
assessment; the Reliability Index Approach (RIA) [2] and the Performance Measure 
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Approach (PMA) [3]. Although either approach can be used, PMA is in general more efficient, 
especially for high reliability problems [12]. Every time the design optimization loop calls for a 
constraint evaluation, a reliability assessment loop is executed which searches for the MPP 
in the standard normal space.  
 If the PMA-based approach is used, the general RBDO problem of Eq. (13) is stated 
as [12] 

                  
X

f 

           s.t.  0
ip

G ,  ni ,...,2,1                    (17) 
                  UL ddd   
                  LX. 
where each probabilistic constraint is transformed to an equivalent inequality constraint 
involving the performance measure pG  which is calculated from the following reliability 
minimization problem 

                  p     (18) 

            s.t  t=U  
where the vector U  represents the random variables in the standard normal space.  
 As shown from Eq. (17), the PMA-based RBDO formulation involves nested 
optimization loops, which may hinder on its computational efficiency and convergence 
properties. The same holds for the RIA-based RBDO formulation. To improve the 
computational efficiency, two new classes of RBDO formulations have been recently 
proposed. The first class decouples the RBDO process into a sequence of a deterministic 
design optimization followed by a set of reliability assessment loops [7]. The series of 
deterministic and reliability loops is repeated until convergence. The second class of RBDO 
methods converts the problem into an equivalent, single-loop deterministic optimization [8] 
providing therefore, a substantial computational advantage. The single-loop RBDO method 
of [8] is used in the case study of the next section. 
 
5.2. APPLICATION 

 An RBDO study of the main bearing lubrication performance of an operating V6 
engine is presented here. The maximum oil film pressure for each bearing is minimized 
subject to each maximum pressure being below a specified value and the oil film time ratio 
for each bearing being less than a specified value. The oil film time ratio is defined as the 
percentage of time within each cycle that a bearing operates with a film thickness less than a 
threshold. Two random variables are considered; the radial clearance C of each bearing and 
the oil viscosity VIS. The objective function is simply the sum of the means of maximum oil 
pressure in each bearing. The RBDO problem is stated as 

                              4321,
min presspresspresspressf

VISC µµ
+++=  

            s.t.  8...,2,1)0)(( jRGP jj X        
         I                               

                   4,...,10
134

1)( ipressG i
i X   

        4,...,10
27.0

1)(4 + iratioG i
i X   

                    ;  sPasPa VIS *0142.0*0058.0 µ       
        mC 5  ,  sPISσ 
                   28.1j  or 8,...,2,152.1 jforj  
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where VISC ,  and VISC ,  are the mean values and standard deviations respectively, of 
the two design random variables C and VIS. The bounds for VISC ,  and VISC ,  are given 
in Table 1. For demonstration purposes, the same target reliability index 28.1β  or 

52.1β  is used for all eight constraints. In general, a different target reliability index may be 
used for each constraint. A reliability index of 1.28 or 1.52 corresponds to a reliability level R 
of 89.97% or 93.57%, respectively. The first four inequality constraints indicate that the 
maximum oil pressure in all four bearings must be less than 134 MPa. The last four 
inequality constraints impose the requirement that the time ratio for each bearing must be 
less than 0.27. 
 Figure 4 shows the progress of the single-loop RBDO process in the X space for 

28.1β . Only the constraints corresponding to press2, press3, ratio2 and ratio3 are plotted. 
The other constraints are outside the design space of Figure 4.  The algorithm starts with an 
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Figure 4. RBDO progress for 28.1β  

 
initial point IX which is infeasible. The corresponding initial –“circle” is also shown. It should be noted that the –“circle” does not have a 
circular shape because the two random variables have different standard deviations. Figure 
4 shows the position of the –“circle” for the two iterations the single-loop algorithm needed 
to converge. The center of each –“circle” indicates the value of the design vector IX. As shown, the optimum (point B) with X has been reached with only two iterations. Constraint 7G  corresponding to ratio3, is the only active constraint. It must be noted that physically the –“circle” moves within the feasible domain defined by all constraints, until it either becomes tangent to at least one constraint (active constraint) without penetrating the fixed boundaries of the feasible domain (constrained optimum) or the objective function is minimized without any constraints being active 
(unconstrained optimum). In the latter case, the –“circle” is within the feasible domain 
without touching its boundaries. 

 For the 28.1β  case, there is an 89.97% chance that a design realization will fall 
within the –“circle”. We have therefore, an 89.97% reliable design; all constraints will be 
satisfied 89.97% of the time. Figure 5 shows the RBDO results for 52.1β . In this case, 
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both constraint 7G  corresponding to ratio3 and constraint 3G  corresponding to press3, are 
active. The –“circle” is tangent to both 7G  and 3G . With the given variability of C and VIS, 
indicated by their standard deviations, there is no feasible solution for  greater than 1.52. 
The maximum reliability we can achieve for this problem is therefore, 93.57%. 

6

7

8

9

10

11

12

13

14

15

16

17

1.5 2 2.5 3 3.5 4 4.5 5

C*10-5 (m)

VI
S*

10
-3

 (P
a.

 s
)

Prob. Opt. History

Det. Opt. History

Press 3

Press 2

Ratio 2

Ratio 3

Reliable 
O ti

Det. Optimum

1st Iteration

2nd Iteration

Initial pt

Initial β- "circle"

A BMPP
β=1.52MPP

 
 

Figure 5. RBDO progress for 52.1β  
 
 For comparison purposes, Figures 4 and 5 also show the progress of a deterministic 
optimization problem with the same initial point. The deterministic optimization converged to 
the constrained deterministic optimum (point A) in two iterations. Point A has low reliability 
(around 50%) because uncertainty in the design variables C and VIS will result in design 
realizations which will violate the ratio3 constraint.  
 It should be noted that for both the deterministic and probabilistic optima, the mean oil 
viscosity value was pushed to its upper limit of 0.0142 Pa*s (see Table 2 and RBDO problem 
statement). This upper limit was responsible for achieving a maximum reliability of only 
93.57%. A higher reliability level can be achieved if the viscosity upper limit is raised. 
 Table 2 illustrates the efficiency of the single-loop RBDO method by comparing it 
against deterministic optimization. Both need two iterations to converge. The final value of 
the objective function is 352.09, 366.07 and 370.56 for the deterministic and single-loop 
methods with 28.1β  and 52.1β , respectively. Both the deterministic and the single-loop 
RBDO methods required 88 function evaluations. A function evaluation represents a 
calculation of the objective function or any of the eight constraints. The efficiency of the 
single-loop RBDO method is the same with that of deterministic optimization. In general, the 
efficiency of the single-loop method is comparable to the deterministic optimization. It should 
be noted that the efficiency of any RBDO method can not theoretically exceed the efficiency 
of the deterministic optimization. For comparison purposes, Table 2 shows the initial point 
used in both the deterministic and probabilistic optimizations. 
 

Table 2. Summary of results for deterministic and single-loop RBDO methods 
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Initial 
Point Det. Opt. Single Loop 

Design Variables   β=1.28 β=1.52 

1C  (µm) 23 24.055 31.57 32.64 

VIS  0.01 0.0142 0.0142 0.0142 
Objective     

f(X) 397.6581 352.0961 366.0703 370.5696 
Constraints     

0134/1 11 pressG  0.2391 0.3211    0.2369 0.2217    

0134/1 22 pressG  0.0293 0.1782    0.2152 0.0982    

0134/1 33 pressG  0.1200 0.1492    0.0441 0.0015    

0134/1 44 pressG  0.6440 0.7238    0.5994 0.5733    

027.0/1 15 ratioG  0.8725 0.9127    0.8894 0.8858    

027.0/1 26 ratioG  0.0146 0.2405     0.2620 0.2633 

027.0/1 37 ratioG  -0.3571 -0.0101 -0.0001 -0.0529    

027.0/1 48 ratioG  0.6734 0.9907 0.8284 0.7302 

No. of Iterations  2 2 2 
No. of F. E.  88 88 88  
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