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ABSTRACT – 
 
Aim of this study is the determination of continuum elastic material properties for natural 
materials via direct numeric simulation of the material's micro structure. The subject matter to 
this study and an example for a natural material is cancellous bone. 
The calculation procedure which is based on the so called direct mechanics approach is 
applied to a cube shaped bone specimen taken from the knee joint region of a human femur. 
 
The bone specimen of approximately 8mm edge length was scanned with a micro computer 
tomograph with 0,014mm isotropic spatial resolution. From this dataset a high resolution 
FEM model was created. 
 
As a start the procedure is applied to the model in its original size. The results will be shown 
and discussed in detail to demonstrate their plausibility. Further on the model will be divided 
into sub domains and the procedure is then applied to each domain. By means of these 
results the influence of the chosen RVE size to the derived continuum elastic material 
properties will be shown. 
 
 
TECHNICAL PAPER - 
 
 
1. INTRODUCTION 
 
The biomechanical simulation of bone-implant systems is subject to many studies presented 
in the open literature. Up to the present day most of these studies consider bone tissue as an 
isotropic material with inhomogeneous distribution throughout the model even though it is 
also well proven that especially cancellous bone, which fills the joint region of the long bones 
has to be considered at least as orthotropic [1, 2, 3, 4]. 
The negligence of the correct material properties can be assigned to their minor influence to 
global solutions in contrast to, for example, the muscle forces. Another problem is the non-
existence of proper material models which provide a suitable mapping of orthotropic 
inhomogeneous material distributions from clinical imaging data to FE-models. 
The existence of correlations between bone density data which are provided for example by 
clinical computer tomography and orthotropic elastic constants for bone is shown in [5]. 
That these experimentally determined correlations can be utilized in an engineering manner 
to generate orthotropic inhomogeneous material distributions from clinical CT-data suitable 
for FE-simulations is shown by Schneider et al. [6]. 
 
A question which arises from this kind of material mappings and also from the general 
application of the FE method with elastic continuum material formulations to micro structured 
natural materials is the one of resolution.  
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With clinical computer tomography isotropic spatial resolutions up to 0.5mm are possible. 
The element length in currently used FE-models for the simulation of bone implant systems, 
for example of the human femur, varies between 1mm – 3mm [2, 7, 8].  
For the experimental determination of elastic constants specimens with an edge length of 
approximately 10mm are used [9, 10]. 
 
The current mapping method proposed by our group calculates the elastic constants by 
averaging all voxels of a CT dataset which are enclosed in one element of the corresponding 
FE-mesh. This means the resulting representative volume element (RVE) is equal to the 
element resolution of the FE mesh but not even close to the size of the RVE used to 
determine the elastic constants from experiments.  
If one now wants to do non-linear simulations which include plasticity and damage models a 
refinement of the FE-meshes close to the implant will be necessary what of course will lead 
to a further decrease of the RVE size. 
 
The aim of this study is to evaluate the influence of the RVE size reduction to the elastic 
material constants by means of the direct mechanics approach. Also this study is a first step 
towards the clarification weather it is justified to apply an orthotropic continuum material 
model to bone tissue if the RVE size decreases to the resolution of clinical imaging data. 
 
 
2. MATERIALS AND METHODES 
 
In this part the theoretical methods applied to bone specimens as well as the specimen itself 
and the modelling techniques used for the geometry setup are described. 
Averaged quantities of the RVE will be noted with a bar accent, tensor quantities are noted in 
non italic font and matrix quantities are noted in bold, big letters. 
If not specified the indices of all quantities are  and the Einstein summation 
convention has to be applied if indices appear in equal pairs. 
 
 
Standard mechanics approach 
 
With the standard mechanics approach a procedure is described which is often used as the 
starting point to the application of homogenisation theory [11, 12]. Aim of the approach is the 
determination of averaged elastic properties of micro structured materials on the continuum 
level. One perquisite which is essential to this approach is that the material properties of the 
microstructures in the analysed RVE are known. In this study the material of the bone 
microstructures is considered to be homogeneous with isotropic behaviour.  
  
To calculate the averaged macroscopic strain in an RVE from the local microscopic strain in 
the microstructures, the connection 
 

 
 
is given, with: 

,  the Volume and the Boundary of the RVE respectively; 
 the mean strain tensor of the RVE; 
 the local strain tensor; 
 the prescribed displacement on the RVE boundary; 
 the normal vector to the RVE boundary. 

 

(1)



3rd ANSA & μETA International Conference 
September 9-11, 2009 Olympic Convention Centre, Porto Carras Grand Resort Hotel, Halkidiki Greece 

   

 
A similar connection is given for the calculation of the averaged macroscopic stress in the 
RVE form the local microscopic stresses. 
  

 
 
With: 

 the mean stress tensor of the RVE; 
 the local stress tensor; 

 the prescribed traction on the RVE boundary; 
 a local coordinate on the RVE boundary. 

 
To connect the averaged macroscopic strain applied to the RVE with the resulting averaged 
macroscopic stress one defines 
  (3) 
 
With  the so called effective stiffness of the RVE which is a tensor of rank four. 
 
Furthermore, to connect the local microscopic strains with the averaged macroscopic strain 
the local structure tensor  , also a tensor of rank four, is defined by 
 
  (4) 
 
The development of the correlation between the elastic properties of the microscopic 
structures to the averaged elastic properties of the RVE is started from the generalised 
Hooke’s law on the microscopic level 
 
  (5) 
 
Integrating both sides of equation (5) yields 
 

 
 
Substituting the left hand side with equation (2) and  with equation (4) we get 
 

 
 
Comparing equation (7) to equation (3) one recognizes the relation 
 

 
 
from which the effective stiffness of the RVE can be calculated if the local elastic properties 
and the function of the local structure tensor for the micro structure of the RVE are known. 
 

(2)

(6)

(7)

(8)
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Due to symmetries in the local stiffness tensor and the local structure tensor equation (8) can 
be rewritten as a 6 x 6 matrix equation in terms of the averaged and local stiffness 
matrices ,  and the local structure matrix  
 

 
 
The change from the tensor indices  to the matrix indices  is done as 
follows 

 
 
To calculate the local structure matrix equation (4) is also rewritten in terms of the local 
structure matrix  and the averaged and local strain vectors  and  of dimension 6 x 1 
 
  (10) 
 
To solve equation (10) for a cube shaped RVE each column of  is calculated separately 
form one of six load cases which are applied to the RVE. From these six load cases are 
three pure compression and three pure shear loads. 
 
So for the load case  the components of the average strain tensor  are: 
 
   
   with  
 
From that technique we get  
 

 
 
Summarizing the described procedure one has to do the following steps 
 

1. Apply the six described load cases to the FE model of the analysed RVE 
2. Calculate the local structure matrix  for each element according to equ. (11) 
3. Integrate the effective stiffness of the RVE according to equ. (9) 

 
 
Determination of material symmetries 
 
Since this study deals with natural materials material symmetries in the analysed specimens 
cannot be known a priori and so the calculated effective stiffness matrices will be dense in 
general.  
To determine whether there are distinguished directions in which material symmetries like 
orthotropy appear, the calculated effective stiffness tensors were simply transformed step by 
step with a rotating coordinate system. The coordinate system was rotated with its third 
direction over a complete hemisphere and according to each rotation step of the third 
direction the first and second direction was rotated over an angle of . See fig. 1 for the 
definition of the rotation angles. 

 
For each transformation of the effective stiffness tensor the sum of squares of the coupling 
terms being 0 for an ideal symmetric material was evaluated. 
 

(9)

(11)



3rd ANSA & μETA International Conference 
September 9-11, 2009 Olympic Convention Centre, Porto Carras Grand Resort Hotel, Halkidiki Greece 

   

  (12) 
 
The minimum of these sums was then assigned the highest 
achievable symmetry in the material properties of the 
analysed RVE. 
 
The advantage of this approach over its low efficiency and 
also over the possible application of optimisation algorithms 
are its simplicity in implementation and that the global 
minimum of equation (12) will always be found. 
 
 
 
 
 Figure 1 – Rotation angles 
 
 
Bone specimens 
 
The subject matter of this study was a micro computer tomography data set taken of a 
cancellous bone specimen from the distal joint region of a cadaverous, primed human femur 
(see fig. 2). The physical dimension of the specimen was 10mm cubed.  
 

 
 
Figure 2 – Position and representations of cancellous bone specimen 
 
The size of the micro-CT data set was 817 x 865 x 504 voxels with an isotropic special 
resolution of 0.014mm. 
To avoid the disturbance from the cutting blade in the boundary regions of the specimen only 
350 voxels in each direction where used from the original data set which results in a physical 
cube shaped model with an edge length of . 
 
 
Finite-Element models 
 
For the extraction of the bone geometry from the CT data the iso-surface module from the 
HLRS visualisation tool COVISE was used. The module triangulates iso-surfaces by means 
of the marching-cubes algorithm. The output is then written as an ABAQUS input deck which 
makes it possible to directly import the bone geometry on triangle basis into ANSA. 

Physical representation CT representation 
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Figure 3 – Geometry configuration of complete modelled volume 
 
Since the marching cubes algorithm produces triangles of bad quality not suitable for direct 
FE-meshing a mesh reconstruction was performed with ANSA. Also the element edge length 
was increased during the reconstruction from 0.014mm to 0.03mm to reduce the total 
number of triangles. A further coarsening of the mesh was not applied since the 
reconstruction produced topological errors in the surface mesh which had to be fixed 
manually. The finally modelled geometry is shown in fig. 3.  
 
After mesh reconstruction and improvement the bone geometry was split in 8 sub-volumes 
each with an edge length of  (see fig. 4). The sub-volumes are specified by 
indices according to their position on the coordinate axes, e.g. the one next to the origin of 
the coordinate system in the lower left corner is called . 
 

 
 

Constraints 
master nodes 

SV x y z

SV x y z SVx y z
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Figure 4 – Geometry configuration of sub-volumes 
The boundary conditions for applying the six load cases were modelled with ABAQUS 
constraints as follows. One independent master node was placed in the middle of each face 
of the considered volume cube. Then the degree of freedom (DOF) of all nodes in one face 
acting in the normal direction of the face was coupled to the rigid body movements of the 
corresponding master node. This technique allows a free movement of all nodes in one face 
in tangential directions while ensuring that the face remains absolutely planar. 
 
The prescribed displacements can now simply be placed on the six master nodes, 
translational as well as rotational ones, so reproducing the desired average strains needed 
for the evaluation of equ. (11). The DOFs of the according master nodes which are applied 
with prescribed displacements are listed in tab. 1 for each face of the volume cube. 
 
 

Cube faces Normals of cube faces DOFs with prescribed displ. 
xy [-1 0 0] / [-1 0 0] 3, 4, 5 
xz [0 -1 0] / [0 -1 0] 2, 4, 6 
yz [0 0 -1] / [-0 0 1] 1, 5, 6 

Table 1 – DOFs with prescribed displacements for cube faces 
 
The boundary conditions applied for each load case are summarised in tab. (2). The load 
cases are specified by the according strain they are inducing in the considered volume. To all 
DOFs which are listed for a face in tab. 1 but not being specified in column 4 of tab. 2 a 
prescribed displacement of 0 was applied. 
 
 
Load case Displ. cube face Normal of displ.cube face Displaced DOF Induced strain  

xx yz [-1 0 0] 1 -0.001 
yy xz [0 -1 0] 2 -0.001 
zz xy [-0 0 1] 3 -0.001 

yz [-1 0 0] 6 
xy 

yz [-1 0 0] 6 
-0.001 

yz [-1 0 0] 5 
xz 

yz [-1 0 0] 5 
0.001 

xz [0 -1 0] 4 
yz 

xz [0 -1 0] 4 
-0.001 

Table 2 – Specification of prescribed displacements for load cases 
 
As already mentioned the FE simulations done for this study where carried out with ABAQUS 
6.8-4. The homogeneous isotropic material applied to the bone structures was modelled with 
the elastic constants  and  according to [13]. 
 
The calculations of the effective stiffness matrices and the search for possible symmetries of 
the material constants where done with a post processing procedure implemented and 
developed in FORTRAN 2003 and Coarray FORTRAN at the HLRS. 
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3. RESULTS 
 
Below the evaluations of the calculated effective stiffness matrices are presented. When in 
this part it is spoken from “symmetry directions” the normals of the major symmetry planes of 
a material are meant. 
 
 
Absolute value of the effective stiffness matrix coefficients 
 

First the absolute values of the components Eij of the calculated effective stiffness matrices E 

are evaluated. Before the evaluation was done, all matrices were transformed so that E11 is 

the lowest and E33 is the highest of the three normal stiffness components. 

In fig. 5 the absolute value of E11 and E33, the highest and lowest shear stiffness components, 

denoted with ES,min and ES,max, and the highest coupling term, denoted with EC,max, which should 

be zero in the case of a material with 3 or more major symmetry planes, are presented. 
 

 
Figure 5 – Absolute values of selected stiffness components 
 
The first result that can be seen is, that the values of the calculated normal and shear 
stiffness coefficients are comparable to the ones that can be found in the literature for 
cancellous bone [13].  
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Regarding the problem of resolution, from fig. 5 it can further be seen that the increase of 
resolution from 4.9mm to 2.45mm reveals a significant variance of the elastic coefficients in 

V. The effective stiffness matrices calculated for V and all sub-volumes can be found in 

annex A.  
There the reader can also see that all calculated matrices are completely symmetric which 
proofs, that the boundary conditions specified in the last section are consistent. 
 
 
Difference between calculated and expected material behaviour 
 
The major characteristic of orthotropic material behaviour is the decoupling of normal and 
shear strains if the material coordinate system is oriented along the three orthogonal, 
distinguished material directions. This means, that only the non diagonal coefficients of the 
stiffness matrix, which couple normal to normal strains, are . 
To specify the difference between the calculated effective material behaviour and the 
expected orthotropic material behaviour  the sum of absolute values of the shear to normal 
strain coupling coefficients normalised with respect to the highest normal to normal strain 
coupling coefficient in the considered matrix is evaluated.  
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As an example for this approach the evaluation for EV is shown below.  

 
 
 

  EV ൌ 

__  _  

 
 
 

  ΔoV ൌ 0.890 

 

The comparison of EV and the sub-volumes can be seen in fig. 6. 

 

 
Figure 6 – Absolute values of selected stiffness components 
 

0,234  0,060  0,016

0,001  0,093  0,266

  192  71  104  17  4 1

  71  245  95  0  7 19
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What can be seen from fig. 6 is the fact that not only the absolute values of the stiffness 
coefficients show variations when increasing the resolution but also the degree of orthotropy 

in 4 out of the eight sub-volumes is significantly different from the one of V. 

The authors are aware, that from the analysis of one specimen no general conclusions can 

be drawn. But looking at the total values of ΔoV and ΔoSV one can recognize the tendency that 

a material model made for a lower resolution scale is not necessarily valid for a higher one. 
Another tendency which can be seen in the analysis of the elastic constants is that the 
difference to the general assumption of bone material being fully orthotropic is increasing 
with the level of resolution. 
 
 
Directions of major material symmetries 
 
The evaluation of the coordinate systems which were found with the 
search for the minimum of the shear to normal strain coupling 
coefficients showed that the orientation of the highest normal 

stiffness coefficient is not significantly different in V and six of its 

sub-volumes. Here the 33-direction is oriented up to the difference 
of some degrees along the global zz-direction. 
 

This orientation is the one which was expected at least for V since 

the specimen was indeed cut from an arbitrary position in the knee joint region of the bone 
but the axes of the cube were oriented along the main load trajectories.  
These load trajectories can be found in most joint regions of long bones. They are oriented 
during the remodelling process of bone tissue towards the directions in which the main loads 
to the bone are acting (see fig. 7).  

In fig. 8 the orientations of V and all sub-volumes are shown with their correct relative 

position to each other. 
 
What was not expected and kind of surprising in this evaluation is the fact, that in the two 

sub-volumes SVx,‐y,‐z and SVx,y,‐z the general orientation of the major symmetry directions is 

Figure 7 – Main load 
 trajectories
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still similar to the ones of V and the other sub-volumes but the 11- and 33-direction have 

switched places.  
Looking at the orientations of the 11- and 22-direction it can be seen, that only the ones in 

SV‐x,‐y,‐z and SV‐x,‐y,z are oriented similar than the one in V. 

 
This result suggests that not only the variance of the elastic coefficients with the level of 
resolution but also the variance of the orientation of the major symmetry directions has to be 
analysed on the correct resolution level.  
 

 
 
Figure 8 – orientations of the major symmetry directions. 
 
This result is essential to the application of material mapping methods like the one proposed 
in [6] because there the calculation of the material constants from the scalar field of the CT 
density data is independent from the algorithm which determines the orientation of the 
material symmetry directions.  
 
This means only if this algorithm considers the CT data with the same resolution as the 
calculation of the material constants does, the mapping method will produce consistent 
material data. 
 
 
4. CONCLUSIONS 
 
In this study the standard mechanics approach for the calculation of the effective stiffness 
matrices of micro structured materials was applied to a cancellous bone specimen at two 
different RVE resolutions. The resolutions are both significantly smaller than the ones which 
are used in the literature for the experimental determination of elastic material constants 

x 

y 

z 

33-direction 

11-direction 

22-direction 
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where the resolution with the smaller RVE size was comparable to the one which is used as 
the mesh resolution in current FE simulations of bone-implant-systems. 
 
It was shown, that on this RVE scale the general assumption of bone material being 
orthotropic has to be handled with care, since the normal- to shear strain coupling coefficient 
are already of significant size compared to the normal to normal strain coupling components. 
 
Furthermore the evaluation of the orientation of the major symmetry planes in the analysed 
RVEs showed that there are also variances with increasing resolution. The effect was more 
observable between the local 11- and 22-directions than between the local 33-directions but 
nonetheless two out of eight sub-volumes showed a significantly different orientation than the 
others. 
 
As already mentioned it is clear to the authors that from the analysis of one bone specimen 
one can’t draw any general conclusions, but we think one can say that the results of this 
study reveal a dependency of the local material constants upon the used RVE size. 
Furthermore we think that resolution currently used for the FE simulation of bone implant 
systems lies in a not very lucky range where the statement can be made: 
 
“The increase of resolution goes along with a decrease of material symmetry” 
 
For future development it is planned to fully automate the developed semi-automatic model 
setup and evaluation procedures so that they can efficiently be applied to a larger number of 
bone specimens.  
Also more than two resolution steps will be evaluated to make the transition, from orthotropic 
material behaviour on the continuum level to isotropic behaviour on the micro structural level, 
visible. 
Both points are meant to confirm the statements and observations made during this study. 
 
 
REFERENCES 
 
(1) Validation of subject-specific automated p-FE analysis of the proximal femur,  

N. Trabelsi, Z. Yosibash, C. Milgromb, Journal of Biomechanics, 42 (2009) 234-241 
 

(2) A modified method for assigning material properties to FE models of bones, 
Benedikt Helgason, Fulvia Taddei, et al. Medical Engineering & Physics 30 (2008) 
444-453 
 

(3) Evaluation of orthogonal mechanical properties and density of human trabecular bone 
from the major metaphyseal regions with materials testing and computed 
tomography,  
M.J. Ciarelli, S.A. Goldstein, J.L. Kuhn, et al., J. Orthop. Res. 9 (1991) 674-682 
 

(4) Ultrasonic measurement of orthotropic elastic constants of bovine femoral bone, 
W.C. Van Buskirk, S.C. Cowin, R.N. Ward, J. Biomech. Engrg. 103 (2) (1981) 67-72 
 

(5) Relations of mechanical properties to density and CT numbers in human bone, 
J.Y. Rho, M.C. Hobatho, R.B. Ashman, Med. Engrg. Phys. 17 (1995) 347-355 
 

(6) Inhomogeneous, orthotropic material model for the cortical structure of long bones 
modelled on the basis of clinical CT or density data, 
R. Schneider, G. Faust, U. Hindenlang, P. Helwig, Comput. Methods Appl. Mech. 
Engrg. 198 (2009) 2167-2174 
 

(7) Finite element analysis of a bone-implant system with the proximal femur nail,  
P. Helwig, G. Faust, U. Hindenlang, B. Kröplin, C. Eingartner, Technol. Health Care 



3rd ANSA & μETA International Conference 
September 9-11, 2009 Olympic Convention Centre, Porto Carras Grand Resort Hotel, Halkidiki Greece 

   

14 (2006) 411-419. 
 

(8) A standardized finite elemente model of the human femur for biomechanical 
simulations of proximal fractures, 
S. Eberle, P. Augat, in: 14th Finite Element Workshop, University of Ulm, July 2007, 
ISBN:978-3-9806183-9-7, pp. 98-102 
 

(9) Estimation of mechanical properties of cortical bone by computed tomography, 
S. Snyder, E. Schneider, J. Orthop. Res. 9 (1990) 422-431 
 

(10) Elastic modulus of trabecular bone material,  
R.B. Ashman, J.Y. Rho, J. Biomech. 21 (3) (1988) 177-181 
 

(11) Elastic properties of reinforced solids: Some theoretical principles. 
R. Hill, J. Mech. Phys. Solids 11 (1963) 357-372 
 

(12) A comparison of homogenization and standard mechanics analysis for periodic 
porous composites, 
S.J. Hollister, N. Kikuchi, Computational Mechanics 10 (1992) 73-95 
 

(13) Direct mechanics assessment of elastic symmetries and properties of trabecular bone 
architecture, 
B. van Rietbergen et al., J. Biomechanics 29 (12) (1996) 1653-1657 

 

 
A. CALCULATED EFFECTIVE STIFFNESS MATRICES 

 
 
 

  EV ൌ __ _  

 
 
 

 
 
 

  ESV‐x,‐y,‐z ൌ __ _  

 
 
 

 
 
 

  192  71  104  17  4 1

  71  245  95  0  7 19

  206  63  113  13  ‐14  2 

  63  310  118  0  ‐10  ‐36 

  227  106  139  18  ‐23  ‐5 

  106  423  162  0  ‐12  ‐30 
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  ESV‐x,‐y,z ൌ __ _  

 
 
 

 
 
 

  ESV‐x,y,‐z ൌ __ _  

 
 
 

 
 
 

  ESV‐x,y,z ൌ __ _  

 
 
 

 
 
 

  ESVx,‐y,‐z ൌ __ _  

 
 
 

 
 
 

  ESVx,‐y,z ൌ __ _  

 
 
 

 
 
 

  38  39  30  0  4  5 

  39 134  47  ‐4 7 16

  67  51  28  ‐11  9  2 

  51 110  47  ‐5 4 14

  231  162  102  41  5  ‐5 

  162  311  141  ‐2  ‐4  ‐21 

  167  141  81  0  ‐3  10 

  141  240  117  ‐1  4  1 

  183  88  83  27  14  7 

  88  274  117  0  0  ‐1 
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  ESVx,y,‐z ൌ __ _  

 
 
 

 
 
 

  ESVx,y,z ൌ __ _  

 
 
 

  168  136  123  2  ‐4  8 

  136  236  136  4  0  28 


