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ABSTRACT – 
Formula Student Series is a competition where teams from universities around the 
world design and construct a single-seater race car to participate in related 
international events. Teams have to conform to a set of rules imposing restrictions at 
the general specifications of the car, such as the dimensions, the engine capacity 
and the safety. The paper presents a series of case studies from the use of Finite 
Element Method (FEM) modeling and design optimization of various components 
from the current race car of the Aristotle Racing Team (ART), investigated with the 
aid of ANSA and μΕΤΑ software packages. More specifically, various structural parts 
were modeled and analyzed to reduce weight and deformation, given the restrictions 
imposed by materials’ mechanical and physical properties. Moreover, extensive 
Computational Fluid Dynamics (CFD) analysis of the intake manifold was performed 
for optimizing the air flow to obtain a better engine performance. Additionally, multiple 
crash analyses of the front part of the car were carried out for reducing the number of 
the experiments, thus minimizing cost and development time of the car impact 
attenuator. The use of optimization tools in several components, led to a significant 
reduction of weight without compromising in structural stiffness. 
 
1. INTRODUCTION 
 
Aristotle Racing Team “ART” was created in 2006 at the Mechanical Engineering 
Department of the Aristotle University of Thessaloniki. Since then, ART has 
successfully developed two race-cars, which have competed in several European 
FSAE events. Based on the team’s experience from previous years, ART started the 
design of its third vehicle in September 2011 (see Figure 1). The  
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Design and Technical requirements 
 
Maximum torque was calculated to 700 Nm by considering 1.3 g longitudinal 
acceleration to the system and by applying a safety factor of 2. The length of each 
tube is 308 mm long, with an inner diameter of 45 mm and wall thickness of 2.95 
mm. Under these design constraints it was tried to model carbon fibre tubes using for 
main material orientation ±450. 
 
F.E. Analysis and Model Comparison 
 
The type of analysis applied was static structural and the objectives were to increase 
the torsional stiffness and reduce weight. Shell elements were used for the carbon 
fibre tube and a transversely orthotropic material was defined with the use of material 
matrix MAT8.   
First, an approximation model with the use of laminate tool was made, trying to 
achieve a filament winding model. The thickness of the layers was in the range of 0.3 
mm to 0.5 mm. The first layer has a thickness of 0.5 mm and orientation 50 as 
described from Brazier effect. The rest layers have a thickness in the range of 0.3 
mm to 0.4 mm and orientation ±450. The mechanical properties used in the model 
are given in Table 1. 
 

Table 1 – Mechanical properties of the laminated material. 
Symbols E1 E2 v12 G12 RHO 
Units GPa GPa - GPa g/cc 
Value 135 10 0.3 5 1.60 

 
The maximum rotational displacement of the carbon fibre tube is 0.047 rad, 
distributed as presented in Figure 3. 
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used. Moreover, extensive CFD analysis of the intake manifold was performed for 
optimizing the air flow to obtain a better engine performance. Multiple crash 
simulations of the front part of the car were carried out for reducing the number of the 
experiments, thus minimizing cost and development time of the car impact 
attenuator. Also, the use of optimization tools in the design of several components, 
led to a significant reduction of weight without compromising in structural stiffness. 
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