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ABSTRACT  
A basic fatigue post-processing module for µETA-Post has been developed, consisting of 
Python scripts and an easy-to-use interface in the form of a User toolbar. The fatigue 
analysis is based on a simplified critical plane approach, where the critical direction is taken 
as the direction of the absolute maximum principal stress. Alternatively, the user may specify 
a projection direction. The stress history can be obtained either from a sequence of states, or 
by linear superposition of states scaled by curves. A standard routine for rainflow count is 
used for obtaining amplitude and mean stresses, and cycle counts.  Fatigue strength data is 
input in the form of S-N-curves, in an easy-to-edit text-file-format. The fatigue material data is 
assigned to the elements via the property definitions of the corresponding keyword file. 
Linear damage accumulation (Miner’s rule) is used for computing the fatigue damage. For 
each processed element, the maximum principal stress and amplitude stress, and calculated 
fatigue damage, are stored as scalar results, which can be visualized as fringe plots. This 
means that further post-processing of the fatigue analysis results is easily performed using 
the other built-in tools of µETA-Post. The module was developed using the built-in scripting 
tools of µETA-Post, which with its online help and powerful script editor offers an efficient 
programming environment. 
 
1. INTRODUCTION 
 
Fatigue strength in general is an important part of the customer experienced quality of a 
product. While a failure due to a dramatic overload or crash loading may be accepted by the 
customers, since then the connection between the loading and resulting failure is immediate 
and obvious, fatigue failure is caused by a very high number of small loadings, which in 
general are experienced as highly normal loadings by the customer. The coupling between 
the loading and the fatigue failure is not obvious to the everyday customer, see Figure 1. The 
scatter in loading and material properties also add a stochastic side to the nature of fatigue 
failure, which may further increase customer irritation. Many examples through the history, 
for example the DeHaviliand Comet airplanes and the Eshcede ECE train disaster, show that 
fatigue failure also can have catastrophic consequences, including loss of lives. 
 
This makes it is important to incorporate fatigue analysis in an efficient and user friendly way 
in the design flow, especially so in the automotive and generally in the vehicle industry. This 
is a segment of the manufacturing industry where ANSA and µETA already are the preferred 
tools for general pre- and post-processing work. µETA-Post offers a powerful platform for 
general post-processing, and by the use of session files, Python scripts and User toolbars, a 
high level of customization can be achieved. By integrating the fatigue analyses into µETA, a 
consistent work flow is facilitated, where the fatigue analysis can be performed in the same 
way by different CAE engineers.  
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Figure 1 – Left image: in a crash or overload situation, the relation between the loading and 
the resulting deformation is often obvious to the everyday customer. Right image: fatigue 
failure often comes unexpectedly to a customer, without any obvious coupling to the current 
loading. (Failure of a bicycle handlebar stem). 
 
 
2. FATIGUE ANALYSES AT BAE SYSTEMS 
 
The customer requirements for all terrain vehicles, see Figure 2 for an example,  are in 
general extremely high, but with different focus for different customers (military, rescue 
service, energy distributors etc.). One common requirement is however the demand for high 
reliability in service, under rough conditions. A fatigue failure causing a vehicle stop could 
potentially have fatal consequences in a combat situation. 
 
At BAE Systems, fatigue analyses are incorporated as a central part of the design work of 
every development project. The fatigue analyses are based on experience from testing 
(ranging from materials testing via component testing to full-scale field tests) and also use in 
practical operations, including feedback from customers. At BAE Systems Hägglunds, 
µETA-Post is the premier post-processing tool, and incorporating fatigue analysis capabilities 
will help streamline the analysis work further. 
  

 
Figure 2 - The BvS 10 MK II all terrain vehicle from BAE Systems Hägglunds. 
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2. DEVELOPMENT OF THE MFAT TOOLBAR 
 
The development work (coding, de-bugging, verification) of mFAT was done using the built-in 
tools for customization of µETA – Post (1): the Toolbar Designer and the Script Editor (2). 
The work was done in close cooperation with the users at BAE Systems. The flexibility of 
µETA-Post, by the use of toolbars, session commands, and scripts, makes it very easy to 
customize in accordance with the user’s requirements. In mFAT, communication with the 
user is mostly done explicitly via user actions (buttons, checkboxes, file textboxes etc.) but 
partially also implicitly, based on what information is present in the current µETA database. 
For example, one requirement was that mFAT should be able to compute fatigue damage 
either from a time history composed by a sequence of loaded states, or from a synthetic 
stress history defined by linear superposition of loaded states scaled by curves. If curves 
exist in a 2d plot window with a specific name, linear superposition is performed, otherwise a 
sequence of state is processed. There is no button or checkbox controlling what type of 
analysis is performed, it is simply the name of a2d plot window that decides.  
 
Crating the GUI using the Toolbar Designer 
 
The GUI of mFAT, see Figure 10, was created using the Toolbar Designer of µETA-Post 
(available from User Toolbars > Toolbar Designer). User toolbars in general are very 
convenient for coupling scripts or session files to a GUI, providing numerous ways of 
interaction between the script and the user, and the Toolbar Designer makes it very easy to 
create user friendly GUIs, including tooltips and default values. Even though the user 
toolbars are aimed at interacting with µETA session files, it is easy to interact also with 
Python scripts by the session command “script execute …”.   
 
More advanced GUI:s can be created using BCGUI, which also has a built-in design tool in 
µETA-Post, accessible from the Script Editior > Tools > Designer, see Sections 4.5 and 4.6 
of Ref. (2). 
 
Python programming using the Script Editor 
 
With some previous experience from programing, but not in Python, it is still fairly easy to 
create quite complicated Python scripts after only a short learning period. Python 
programming help is available from many internet resources, the foremost is perhaps 
www.python.org (3). Also, basic programming help for Python is available in the µETA – Post 
documentation (2). The built-in help functions of the Script Editior on the µETA – Python API 
is invaluable for obtaining guidance regarding how to access the µETA-Post database, and 
help is provided to the user in a very efficient way. Almost every function comes with a small 
script primitive exemplifying how to use it, which is very helpful for users just starting to write 
scripts for µETA, see Figure 3.  

http://www.python.org/
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Figure 3 – The Script Editor programming environment. The help window shows a script 
primitive for using CentroidScalarOfElement. 
 
The possibility to use other available Python modules, such as the math and the linalg 
library, etc. also saves time, since many functions are already available to the user. For 
example, in mFAT, the function linalg.eig() was used for obtaining principal stresses as 
eigenvalues of the stress tensor. The possibility to “communicate” with µETA-Post using 
session commands from within scripts (using the utils.MetaCommand) provide possibilities 
for alternative solutions. When coding the mFAT package, some effort was put into handling 
unexpected situations in a user-friendly way, providing feedback to the user in the form of 
warning or error messages. This is conveniently handled in Python, the exception handling 
being one of the strongpoints of the programming language. 
 
The Python script of mFAT is built-up in a function-based way, the object-oriented 
functionality of Python is in general not utilized. A coarse flowchart of the main fatigue 
analysis procedure is shown in Figure 4.  
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Figure 4 - Coarse flowchart of the fatigue analysis routine. 
 
De-bugging and verification 
 
The subroutines were to a large extent first tested and verified separately, and in later stages 
the functionality of the complete script was tested by a simple example. Python as a 
programming language provides quite good feedback to the programmer regarding syntax 
errors or unexpected events (such as trying to access a list beyond its last element) in a 
stable way (avoiding segmentation faults or similar). Results were compared to hand 
calculations and previous implementations in FORTRAN and Matlab/Octave. De-bugging of 
the GUI and general functionality of mFAT was done in close cooperation with the users at 
BAE Systems. 
 
3. BRIEF THEORETICAL BACKGROUND 
 
In this section, some of the theoretical background to the implemented fatigue analysis 
algorithm is presented. A good overview of fatigue and fatigue analysis in general is 
presented in Refs. (6), (7). For details on Python programming, the reader is referred to Ref. 
(3). 
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Principal stresses and stress projections 
 
In order to obtain a scalar stress measure, a very basic critical plane approach is used in 
mFAT. It is assumed that the normal to the critical plane, for each element respectively, is 
given by the direction corresponding to the maximum absolute value of the principal stress 
(this will also be the direction that maximizes the normal stress). This means that the stress 
history, for each visible element, must be processed twice, sequentially: 
 

1. The stress history (either from a sequence of states, or by linear superposition of 
states scaled by load curves) for element k is processed, and the principal stresses 

i
k and corresponding directions ei

k are computed for each time step. When all time 

steps are processed, this will give the maximum absolute principal stress max
k and 

corresponding direction emax
k.   

2. Process the stress history for element k again, now projecting the stress tensor on 
the direction emax

k.  This will give a time history of the normal stress, relative to a fixed 
direction. On this time history, rainflow count (see Section Error! Reference source 
not found.) is applied. 

 
Rainflow count 
 
Once the stress history is obtained, it can be subjected to cycle counting, in order to obtain 
the corresponding amplitude and mean stresses. In mFAT, this is done using rainflow count. 
The method of “rainflow counting” for determining load cycles from a general load history 
was first mentioned by Endo (8). The algorithm of the present mFAT implementation is based 
on Refs. (9), (10), and follows the ASTM standard (12) for rainflow counting. The present 
implementation of mFAT (in Python) was verified against previous implementations in 
FORTRAN and Matlab/Octave, and also against other publically available implementations, 
for example Ref. (11). 
 
A short description of the rainflow count method follows (see also Figure 5). First, the signal 
is cleaned, so that only the local extremes are kept. The remaining history is rotated with the 
time axis downward, and the linear curve segments are treated as they would form a 
“pagoda roof”. The cycle counting is done by tracing an imaginary rain drop dripping down 
these roofs, following several rules. 
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Figure 5 - Rainflow counting of cyclic loading. From Ref. (7). 
It shall be noted that by use of the rainflow counting algorithm, it is implicitly assumed that 
the order of the loadings does not matter to the fatigue life of the structure, thus all sequence 
effects are neglected. 
 
Linear damage accumulation 
 
Once the amplitude and mean stresses, with corresponding cycle counts are obtained from 
the stress history via the rainflow counting procedure, the fatigue damage for each element k 
is computed using linear damage accumulation according to Palmgren-Miner: 

 

where  is the cycle count from the rainflow count (either 0.5 for a half cycle or 1.0 for a full 

cycle1) and  is the allowed number of cycles at the current loading for the material of 
element k, computed from the S-N curve using Basquin’s equation, as 

 

where is the stress amplitude of cycle i and Ck and mk are fatigue strength parameters for 
the material of element k (also compare Figure 6). No mean stress correction is currently 
implemented in mFAT, but it would be easy to add also such a feature, according to for 
example Goodman or Gerber. 
 

 
Figure 6 -S-N parameters. 
 
4. USING THE MFAT TOOLBAR 
 
In this Section, a quick overview of how to use the mFAT - package is given. Numbers in the 
list refer to annotations in Figure 10. 
 

1. Load the geometry of the FE-model to be analyzed: Read Results > Geometry. Select 
the keyword file (.key or .k for LS-DYNA, .inp for Abaqus). 

2. Open the mFAT – toolbar from User Toolbars. Load the stress results. This can be 
done manually, but is most conveniently done using the “Read stresses” – button, but 
to some extent automatic reading of stress results is implemented. Results will only 
be read for the visible parts. 

3. Load fatigue material data, using the Fatigue data file – input filed. The S-N curves 
can be visualized by the “Plot fatigue curves” – button, see 

                                                 
1 Bucket sorting is not done, each loading (m, a) is treated separately, either as a full cycle or a half cycle. 
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Figure 7. 

 
Figure 7 - Example of plotted fatigue curves, with annotations showing slopes. 
 

4. Perform the fatigue analysis, by clicking on the “Calculate fatigue damage” - button. 
The fatigue analysis will only be performed on visible shell and solid elements. 

a. By default, a fatigue analysis of the stress history defined by the loaded states 
is performed.   

b. It is also possible to perform a fatigue analysis of a stress history defined by 
linear superposition of loaded states. For this option to be active, a 2d Plot 
window with the title “LoadcaseScalefactors” must exist (this window can be 
created from the toolbar), and contain load curves defining the scale factors of 
the states, see Figure 8. 

 
Figure 8 - Example of load curves for scaling loaded states. 
 
The curves can be linked to the states, either by their ID (for example curve ID 
5 will scale loaded state number 5) or by a spreadsheet table (if it exists) 
named “LoadcaseScalefactors”, see Figure 9. 
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Figure 9 - Example of spreadsheet for association of load curves to states. 
Only columns A and B are read by the script, leaving space for comments. 
 

5. A state “Fatigue damage of states/curves” will be created, containing the following 
scalar results: Fatigue damage, Max stress amplitude and Absolute Max principal 
stress. These results can be fringe plotted as any other scalar results in µETA-Post. 
Further post-processing of fatigue analysis results, such as identification of hot-spots 
or critical areas, and report generation, can be performed using the built-in 
functionality of µETA-Post. It is also possible to save the results for further post-
processing at a later stage in .metadb – format. 
 

 
Figure 10 – GUI of the mFAT – toolbar. Numbers refer to points in the list above. 

2. 

4. 

3. 

4b 
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5. NUMERICAL EXAMPLES 
In order to demonstrate the capability of the mFAT tool, a set of fatigue analyses of a crank 
shaft assembly2 was studied. The crankshaft was meshed with 267000 2nd order tet 
elements. Elastic material behaviour was assumed for all included components. First, a basic 
stress analysis of the crank shaft only was performed (using LS-DYNA implicit), applying Y 
and Z-loadings to the four different cranks (totally 8 load steps), see Figure 12. Then, a 
fatigue analysis corresponding to superposition of the Y- and Z-loadings, according to a firing 
sequence of 1-3-4-2, was set up using simplified cylinder pressure curves, see Figure 13. A 
uniform sampling was used, resulting in totally 21 synthetic states. An assumed S-N curve 
according to Figure 11 was used for the fatigue analyses. For the complete crankshaft, the 
required analysis time was about 2.6 hours, see Table 1, using a normal work station with 
Intel Xeon(R) CPU E31240 running at 3.30GHz. If the element count is limited to 5577, by 
focusing on the interesting radii of the crankshaft, the analysis time is reduced to about 2.5 
minutes. This illustrates that if the critical areas are well known, significant savings in 
analysis time can be made if the user focuses the fatigue analysis to these areas. Fatigue 
analysis results are presented in Figure 14. Identical fatigue damage results in the critical 
radii are obtained, corresponding to a fatigue life of 917000 cycles. 

 
Figure 11. Assumed S-N curve for the crank shaft material. 
 
Table 1 – Performance comparison for different mFAT analyses 

Case Element count Number of states Time / s 

Superposition of states 267000 21 9219 

Superposition of states 5577 21 149 

Sequence of states 318509 8 525 

 
 

                                                 
2
 Based on the ANSA tutorial ”Solid_mesh_asembly.pdf”. It shall be emphasized that this is merely a numerical 

example, not an attempt at making a proper crankshaft system fatigue analysis. 
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Figure 12 – Set up of the unit load cases for the crank shaft. The (Y, Z) displacements are 
constrained at the surfaces indicated by dark green, and the crankshaft rotation is 
constrained at the end towards the flywheel. 
 

 
Figure 13 - Simplified cylinder pressure curves for Y and Z loading of the crankshaft. 
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Figure 14 - Calculated fatigue damage for the synthetic stress history of the crankshaft. The 
top image shows results for the complete analysis, while the bottom image shows results for 
the reduced analysis (radii only). Identical results are obtained, with a maximum fatigue 
damage of 1.09E-6. 

 
Figure 15 – Geometry of the crankshaft assembly. 
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In a second example, an assembly consisting of the crankshaft, conrod, piston pin and piston 
(see Figure 15) was analysed, for a sequence of 8 different cylinder pressures and crank 
angles. Contacts are modelled for all bearing surfaces. Prescribed boundary conditions were 
used to rotate the crankshaft. The cylinder pressure was applied as a distributed loading to 
the top face of the piston. The cylinder liner and main bearings were replaced by simplified 
boundary conditions. Also this case was solved by LS-DYNA implicit. For the fatigue analysis 
of this example, different fatigue curves were assigned to the parts by material name, see 
Figure 16. The fatigue analysis was performed based on a sequence of states, which means 
that the principal stresses computed by µETA-Post’s hard-coded routines during results 
loading can be used. This saves significant time compared to the case when mFAT / Python 
computes the principal stresses of the synthetic stress history from load curves, compare 
Table 1. The fatigue analysis results are shown in Figure 17. The critical component with the 
assumed fatigue data is the piston, with a fatigue life corresponding to 530000 cycles. 
 

 
Figure 16 - Assumed S-N curves for the materials of the crankshaft assembly. 
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Figure 17 - Fatigue damage results for the crankshaft assembly. 

 
6. CONCLUSIONS 
 
An efficient and user friendly tool for fatigue post-processing within the framework of µETA-
Post was implemented. Both Abaqus and LS-DYNA simulation results can be handled. The 
tool was developed using the built-in scripting tools of µETA-Post, which with its online help 
and powerful script editor offers an efficient programming environment. The numerical 
examples show that fatigue analyses of quite big models can be performed within reasonable 
time.  
 
Currently, a rather basic fatigue model is implemented, but in the future this could be 
extended to account for mean stresses, according to for example Goodman or Gerber. Also, 
extensions towards accounting for multi-axial stress state by use of a more advanced fatigue 
model (for example the Dang-Van (13) criterion) could be worth considering.  
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