
6
th

 BETA CAE International Conference

MFAT – A BASIC FATIGUE MODULE FOR µETA-POST

1Anders Jonsson*, 2Martin Sjöberg, 2Johnny Grenwald
1DynaMORE Nordic AB, Sweden, 2BAE Systems Hägglunds AB, Sweden

KEYWORDS – Fatigue, Python, rainflow count, S-N-curve

ABSTRACT
A basic fatigue post-processing module for µETA-Post has been developed, consisting of
Python scripts and an easy-to-use interface in the form of a User toolbar. The fatigue
analysis is based on a simplified critical plane approach, where the critical direction is taken
as the direction of the absolute maximum principal stress. Alternatively, the user may specify
a projection direction. The stress history can be obtained either from a sequence of states, or
by linear superposition of states scaled by curves. A standard routine for rainflow count is
used for obtaining amplitude and mean stresses, and cycle counts. Fatigue strength data is
input in the form of S-N-curves, in an easy-to-edit text-file-format. The fatigue material data is
assigned to the elements via the property definitions of the corresponding keyword file.
Linear damage accumulation (Miner’s rule) is used for computing the fatigue damage. For
each processed element, the maximum principal stress and amplitude stress, and calculated
fatigue damage, are stored as scalar results, which can be visualized as fringe plots. This
means that further post-processing of the fatigue analysis results is easily performed using
the other built-in tools of µETA-Post. The module was developed using the built-in scripting
tools of µETA-Post, which with its online help and powerful script editor offers an efficient
programming environment.

1. INTRODUCTION

Fatigue strength in general is an important part of the customer experienced quality of a
product. While a failure due to a dramatic overload or crash loading may be accepted by the
customers, since then the connection between the loading and resulting failure is immediate
and obvious, fatigue failure is caused by a very high number of small loadings, which in
general are experienced as highly normal loadings by the customer. The coupling between
the loading and the fatigue failure is not obvious to the everyday customer, see Figure 1. The
scatter in loading and material properties also add a stochastic side to the nature of fatigue
failure, which may further increase customer irritation. Many examples through the history,
for example the DeHaviliand Comet airplanes and the Eshcede ECE train disaster, show that
fatigue failure also can have catastrophic consequences, including loss of lives.

This makes it is important to incorporate fatigue analysis in an efficient and user friendly way
in the design flow, especially so in the automotive and generally in the vehicle industry. This
is a segment of the manufacturing industry where ANSA and µETA already are the preferred
tools for general pre- and post-processing work. µETA-Post offers a powerful platform for
general post-processing, and by the use of session files, Python scripts and User toolbars, a
high level of customization can be achieved. By integrating the fatigue analyses into µETA, a
consistent work flow is facilitated, where the fatigue analysis can be performed in the same
way by different CAE engineers.

6
th

 BETA CAE International Conference

Figure 1 – Left image: in a crash or overload situation, the relation between the loading and
the resulting deformation is often obvious to the everyday customer. Right image: fatigue
failure often comes unexpectedly to a customer, without any obvious coupling to the current
loading. (Failure of a bicycle handlebar stem).

2. FATIGUE ANALYSES AT BAE SYSTEMS

The customer requirements for all terrain vehicles, see Figure 2 for an example, are in
general extremely high, but with different focus for different customers (military, rescue
service, energy distributors etc.). One common requirement is however the demand for high
reliability in service, under rough conditions. A fatigue failure causing a vehicle stop could
potentially have fatal consequences in a combat situation.

At BAE Systems, fatigue analyses are incorporated as a central part of the design work of
every development project. The fatigue analyses are based on experience from testing
(ranging from materials testing via component testing to full-scale field tests) and also use in
practical operations, including feedback from customers. At BAE Systems Hägglunds,
µETA-Post is the premier post-processing tool, and incorporating fatigue analysis capabilities
will help streamline the analysis work further.

Figure 2 - The BvS 10 MK II all terrain vehicle from BAE Systems Hägglunds.

6
th

 BETA CAE International Conference

2. DEVELOPMENT OF THE MFAT TOOLBAR

The development work (coding, de-bugging, verification) of mFAT was done using the built-in
tools for customization of µETA – Post (1): the Toolbar Designer and the Script Editor (2).
The work was done in close cooperation with the users at BAE Systems. The flexibility of
µETA-Post, by the use of toolbars, session commands, and scripts, makes it very easy to
customize in accordance with the user’s requirements. In mFAT, communication with the
user is mostly done explicitly via user actions (buttons, checkboxes, file textboxes etc.) but
partially also implicitly, based on what information is present in the current µETA database.
For example, one requirement was that mFAT should be able to compute fatigue damage
either from a time history composed by a sequence of loaded states, or from a synthetic
stress history defined by linear superposition of loaded states scaled by curves. If curves
exist in a 2d plot window with a specific name, linear superposition is performed, otherwise a
sequence of state is processed. There is no button or checkbox controlling what type of
analysis is performed, it is simply the name of a2d plot window that decides.

Crating the GUI using the Toolbar Designer

The GUI of mFAT, see Figure 10, was created using the Toolbar Designer of µETA-Post
(available from User Toolbars > Toolbar Designer). User toolbars in general are very
convenient for coupling scripts or session files to a GUI, providing numerous ways of
interaction between the script and the user, and the Toolbar Designer makes it very easy to
create user friendly GUIs, including tooltips and default values. Even though the user
toolbars are aimed at interacting with µETA session files, it is easy to interact also with
Python scripts by the session command “script execute …”.

More advanced GUI:s can be created using BCGUI, which also has a built-in design tool in
µETA-Post, accessible from the Script Editior > Tools > Designer, see Sections 4.5 and 4.6
of Ref. (2).

Python programming using the Script Editor

With some previous experience from programing, but not in Python, it is still fairly easy to
create quite complicated Python scripts after only a short learning period. Python
programming help is available from many internet resources, the foremost is perhaps
www.python.org (3). Also, basic programming help for Python is available in the µETA – Post
documentation (2). The built-in help functions of the Script Editior on the µETA – Python API
is invaluable for obtaining guidance regarding how to access the µETA-Post database, and
help is provided to the user in a very efficient way. Almost every function comes with a small
script primitive exemplifying how to use it, which is very helpful for users just starting to write
scripts for µETA, see Figure 3.

http://www.python.org/

6
th

 BETA CAE International Conference

Figure 3 – The Script Editor programming environment. The help window shows a script
primitive for using CentroidScalarOfElement.

The possibility to use other available Python modules, such as the math and the linalg
library, etc. also saves time, since many functions are already available to the user. For
example, in mFAT, the function linalg.eig() was used for obtaining principal stresses as
eigenvalues of the stress tensor. The possibility to “communicate” with µETA-Post using
session commands from within scripts (using the utils.MetaCommand) provide possibilities
for alternative solutions. When coding the mFAT package, some effort was put into handling
unexpected situations in a user-friendly way, providing feedback to the user in the form of
warning or error messages. This is conveniently handled in Python, the exception handling
being one of the strongpoints of the programming language.

The Python script of mFAT is built-up in a function-based way, the object-oriented
functionality of Python is in general not utilized. A coarse flowchart of the main fatigue
analysis procedure is shown in Figure 4.

6
th

 BETA CAE International Conference

Figure 4 - Coarse flowchart of the fatigue analysis routine.

De-bugging and verification

The subroutines were to a large extent first tested and verified separately, and in later stages
the functionality of the complete script was tested by a simple example. Python as a
programming language provides quite good feedback to the programmer regarding syntax
errors or unexpected events (such as trying to access a list beyond its last element) in a
stable way (avoiding segmentation faults or similar). Results were compared to hand
calculations and previous implementations in FORTRAN and Matlab/Octave. De-bugging of
the GUI and general functionality of mFAT was done in close cooperation with the users at
BAE Systems.

3. BRIEF THEORETICAL BACKGROUND

In this section, some of the theoretical background to the implemented fatigue analysis
algorithm is presented. A good overview of fatigue and fatigue analysis in general is
presented in Refs. (6), (7). For details on Python programming, the reader is referred to Ref.
(3).

6
th

 BETA CAE International Conference

Principal stresses and stress projections

In order to obtain a scalar stress measure, a very basic critical plane approach is used in
mFAT. It is assumed that the normal to the critical plane, for each element respectively, is
given by the direction corresponding to the maximum absolute value of the principal stress
(this will also be the direction that maximizes the normal stress). This means that the stress
history, for each visible element, must be processed twice, sequentially:

1. The stress history (either from a sequence of states, or by linear superposition of
states scaled by load curves) for element k is processed, and the principal stresses

i
k and corresponding directions ei

k are computed for each time step. When all time

steps are processed, this will give the maximum absolute principal stress max
k and

corresponding direction emax
k.

2. Process the stress history for element k again, now projecting the stress tensor on
the direction emax

k. This will give a time history of the normal stress, relative to a fixed
direction. On this time history, rainflow count (see Section Error! Reference source
not found.) is applied.

Rainflow count

Once the stress history is obtained, it can be subjected to cycle counting, in order to obtain
the corresponding amplitude and mean stresses. In mFAT, this is done using rainflow count.
The method of “rainflow counting” for determining load cycles from a general load history
was first mentioned by Endo (8). The algorithm of the present mFAT implementation is based
on Refs. (9), (10), and follows the ASTM standard (12) for rainflow counting. The present
implementation of mFAT (in Python) was verified against previous implementations in
FORTRAN and Matlab/Octave, and also against other publically available implementations,
for example Ref. (11).

A short description of the rainflow count method follows (see also Figure 5). First, the signal
is cleaned, so that only the local extremes are kept. The remaining history is rotated with the
time axis downward, and the linear curve segments are treated as they would form a
“pagoda roof”. The cycle counting is done by tracing an imaginary rain drop dripping down
these roofs, following several rules.

6
th

 BETA CAE International Conference

Figure 5 - Rainflow counting of cyclic loading. From Ref. (7).
It shall be noted that by use of the rainflow counting algorithm, it is implicitly assumed that
the order of the loadings does not matter to the fatigue life of the structure, thus all sequence
effects are neglected.

Linear damage accumulation

Once the amplitude and mean stresses, with corresponding cycle counts are obtained from
the stress history via the rainflow counting procedure, the fatigue damage for each element k
is computed using linear damage accumulation according to Palmgren-Miner:

where is the cycle count from the rainflow count (either 0.5 for a half cycle or 1.0 for a full

cycle1) and is the allowed number of cycles at the current loading for the material of
element k, computed from the S-N curve using Basquin’s equation, as

where is the stress amplitude of cycle i and Ck and mk are fatigue strength parameters for
the material of element k (also compare Figure 6). No mean stress correction is currently
implemented in mFAT, but it would be easy to add also such a feature, according to for
example Goodman or Gerber.

Figure 6 -S-N parameters.

4. USING THE MFAT TOOLBAR

In this Section, a quick overview of how to use the mFAT - package is given. Numbers in the
list refer to annotations in Figure 10.

1. Load the geometry of the FE-model to be analyzed: Read Results > Geometry. Select
the keyword file (.key or .k for LS-DYNA, .inp for Abaqus).

2. Open the mFAT – toolbar from User Toolbars. Load the stress results. This can be
done manually, but is most conveniently done using the “Read stresses” – button, but
to some extent automatic reading of stress results is implemented. Results will only
be read for the visible parts.

3. Load fatigue material data, using the Fatigue data file – input filed. The S-N curves
can be visualized by the “Plot fatigue curves” – button, see

1 Bucket sorting is not done, each loading (m, a) is treated separately, either as a full cycle or a half cycle.

6
th

 BETA CAE International Conference

Figure 7.

Figure 7 - Example of plotted fatigue curves, with annotations showing slopes.

4. Perform the fatigue analysis, by clicking on the “Calculate fatigue damage” - button.
The fatigue analysis will only be performed on visible shell and solid elements.

a. By default, a fatigue analysis of the stress history defined by the loaded states
is performed.

b. It is also possible to perform a fatigue analysis of a stress history defined by
linear superposition of loaded states. For this option to be active, a 2d Plot
window with the title “LoadcaseScalefactors” must exist (this window can be
created from the toolbar), and contain load curves defining the scale factors of
the states, see Figure 8.

Figure 8 - Example of load curves for scaling loaded states.

The curves can be linked to the states, either by their ID (for example curve ID
5 will scale loaded state number 5) or by a spreadsheet table (if it exists)
named “LoadcaseScalefactors”, see Figure 9.

6
th

 BETA CAE International Conference

Figure 9 - Example of spreadsheet for association of load curves to states.
Only columns A and B are read by the script, leaving space for comments.

5. A state “Fatigue damage of states/curves” will be created, containing the following
scalar results: Fatigue damage, Max stress amplitude and Absolute Max principal
stress. These results can be fringe plotted as any other scalar results in µETA-Post.
Further post-processing of fatigue analysis results, such as identification of hot-spots
or critical areas, and report generation, can be performed using the built-in
functionality of µETA-Post. It is also possible to save the results for further post-
processing at a later stage in .metadb – format.

Figure 10 – GUI of the mFAT – toolbar. Numbers refer to points in the list above.

2.

4.

3.

4b

6
th

 BETA CAE International Conference

5. NUMERICAL EXAMPLES
In order to demonstrate the capability of the mFAT tool, a set of fatigue analyses of a crank
shaft assembly2 was studied. The crankshaft was meshed with 267000 2nd order tet
elements. Elastic material behaviour was assumed for all included components. First, a basic
stress analysis of the crank shaft only was performed (using LS-DYNA implicit), applying Y
and Z-loadings to the four different cranks (totally 8 load steps), see Figure 12. Then, a
fatigue analysis corresponding to superposition of the Y- and Z-loadings, according to a firing
sequence of 1-3-4-2, was set up using simplified cylinder pressure curves, see Figure 13. A
uniform sampling was used, resulting in totally 21 synthetic states. An assumed S-N curve
according to Figure 11 was used for the fatigue analyses. For the complete crankshaft, the
required analysis time was about 2.6 hours, see Table 1, using a normal work station with
Intel Xeon(R) CPU E31240 running at 3.30GHz. If the element count is limited to 5577, by
focusing on the interesting radii of the crankshaft, the analysis time is reduced to about 2.5
minutes. This illustrates that if the critical areas are well known, significant savings in
analysis time can be made if the user focuses the fatigue analysis to these areas. Fatigue
analysis results are presented in Figure 14. Identical fatigue damage results in the critical
radii are obtained, corresponding to a fatigue life of 917000 cycles.

Figure 11. Assumed S-N curve for the crank shaft material.

Table 1 – Performance comparison for different mFAT analyses

Case Element count Number of states Time / s

Superposition of states 267000 21 9219

Superposition of states 5577 21 149

Sequence of states 318509 8 525

2
 Based on the ANSA tutorial ”Solid_mesh_asembly.pdf”. It shall be emphasized that this is merely a numerical

example, not an attempt at making a proper crankshaft system fatigue analysis.

6
th

 BETA CAE International Conference

Figure 12 – Set up of the unit load cases for the crank shaft. The (Y, Z) displacements are
constrained at the surfaces indicated by dark green, and the crankshaft rotation is
constrained at the end towards the flywheel.

Figure 13 - Simplified cylinder pressure curves for Y and Z loading of the crankshaft.

6
th

 BETA CAE International Conference

Figure 14 - Calculated fatigue damage for the synthetic stress history of the crankshaft. The
top image shows results for the complete analysis, while the bottom image shows results for
the reduced analysis (radii only). Identical results are obtained, with a maximum fatigue
damage of 1.09E-6.

Figure 15 – Geometry of the crankshaft assembly.

6
th

 BETA CAE International Conference

In a second example, an assembly consisting of the crankshaft, conrod, piston pin and piston
(see Figure 15) was analysed, for a sequence of 8 different cylinder pressures and crank
angles. Contacts are modelled for all bearing surfaces. Prescribed boundary conditions were
used to rotate the crankshaft. The cylinder pressure was applied as a distributed loading to
the top face of the piston. The cylinder liner and main bearings were replaced by simplified
boundary conditions. Also this case was solved by LS-DYNA implicit. For the fatigue analysis
of this example, different fatigue curves were assigned to the parts by material name, see
Figure 16. The fatigue analysis was performed based on a sequence of states, which means
that the principal stresses computed by µETA-Post’s hard-coded routines during results
loading can be used. This saves significant time compared to the case when mFAT / Python
computes the principal stresses of the synthetic stress history from load curves, compare
Table 1. The fatigue analysis results are shown in Figure 17. The critical component with the
assumed fatigue data is the piston, with a fatigue life corresponding to 530000 cycles.

Figure 16 - Assumed S-N curves for the materials of the crankshaft assembly.

6
th

 BETA CAE International Conference

Figure 17 - Fatigue damage results for the crankshaft assembly.

6. CONCLUSIONS

An efficient and user friendly tool for fatigue post-processing within the framework of µETA-
Post was implemented. Both Abaqus and LS-DYNA simulation results can be handled. The
tool was developed using the built-in scripting tools of µETA-Post, which with its online help
and powerful script editor offers an efficient programming environment. The numerical
examples show that fatigue analyses of quite big models can be performed within reasonable
time.

Currently, a rather basic fatigue model is implemented, but in the future this could be
extended to account for mean stresses, according to for example Goodman or Gerber. Also,
extensions towards accounting for multi-axial stress state by use of a more advanced fatigue
model (for example the Dang-Van (13) criterion) could be worth considering.

REFERENCES

(1) µETA PostProcessor v15.1.X User Guide (META_Post_V15.2.3_Users_Guide.pdf),

help file as delivered with the BETA CAE Software package, BETA CAE, 2015.
(2) µETA PostProcessor v14.1.0 Automation (META AUTOMATION Users GUIDE), help

file as delivered with the BETA CAE Software package, BETA CAE, 2015.
(3) Python 3.3.6 documentation, internet source: https://docs.python.org/3.3/
(4) LS-DYNA Keyword User’s manual version 971, Volume I – II, Livermore Software

Technology Corporation (LSTC), Livermore CA, 2014.
(5) Abaqus Analysis User’s Manual, Dassault Systèmes Simulia Corp., Providence, RI,

USA, 2011.
(6) Socie, D. F., and Marquis, G. B., Multiaxial fatigue, SAE International, Warrendale

2000.
(7) Suresh, S., Fatigue of materials, Cambridge University Press, Cambridge 1998.

https://docs.python.org/3.3/

6
th

 BETA CAE International Conference

(8) Matsuishi, M., and Endo, T., Fatigue of metals subjected to varying stress, Japan
Soc. Mech Engineering, 1968.

(9) Niesłony A., Determination of fragments of multiaxial service loading strongly
influencing the fatigue of machine components, Mechanical Systems and Signal
Processing, Vol. 23(8), 2009, pp. 2712-2721.

(10) Software package rainflow.zip, internet source:
http://www.mathworks.com/matlabcentral/fileexchange/3026

(11) Matlab/Octave script rainflow_bins.m, internet source
http://www.vibrationdata.com/matlab2/rainflow_bins.m

(12) ASTM E 1049-85 (Reapproved 1997), Standard practices for cycle counting in fatigue
analysis, in: Annual Book of ASTM Standards, Vol. 03.01, Philadelphia 1999, pp.
710-718.

(13) Dang Van, K., et al., Criterion for high cycle fatigue under multiaxial loading, Biaxial
and multiaxial fatigue, editors Brown, M.W. and Miller, K. J., pp 459 – 478,
Mechanical Engineering Pblications, London1989,

http://www.vibrationdata.com/matlab2/rainflow_bins.m

