ANSA and META in Marine and Offshore structures analysis

www.beta-cae.com

Interfaces

Model management

Database browser, Model Browser, Properties / Materials lists, DM Browser

Native and Neutral CAD data input

From FORAN to ANSA

From AVEVA Marine to ANSA

Additional information is read from an AVEVA xml file and applied on the model

Interface for SESTRA

Input, output and new DECK for SESTRA

From Ship Constructor to

Use of ship constructor data step file

v Q.

RHO

210000. 7.85E-9 1

193000. 7.85E-9 M 193000.

Import model data:

C & Q + Q

🕑 🔆 lâ Name

🔆 📕 1 Default MAT1 Material

- Property Thickness and
- Material data

DEFINED E

🔆 🔲 1 🛛 Default MAT1 Material

aterials C & Q + Q Id Name

2 Gr. A 3 MDF

RO

210000. 7.85E-9 MAT1 MAT_ELASTIC

type

DEFINED E

ANJA	Properties				151	×
					¥	S
	ld Name	T	MID1 N	IID _type	-	4 -
and calid description	3628 {3433DF95-190C-44E0-8F47-19FF9733DD8A}	1.	1	PSHELL	2	
a and solid description	3960 {F2E49BA6-3CA9-4F3C-8004-0A53200E8860}	1.	1	PSHELL	2	
	4292 {3FBD4653-982C-4429-84C8-04DF02AA9FBC}	1,	1	PSHELL	-	
	4024 (C385889E-F5DU-41A1-94A4-048F510DDCC8)	1.	1	PSHELL		
	5024 (500556C5-1F0E-45A7-6C46-046E6707156A)	1,	1	PSHELL		
	5356 /80EFED64-5535-4847-8880-EE692D9588933	1.	1	PSHELL	al.	
	Properties			T DITE L		
					_	0.04
						1.36
	🔆 🕐 ld Name		T	MID1 MID	_type_	
	91150 Tank Bhd 1500 Stbd		8.	2	PSHELL	
	91469 Bottom Brkt Fr.61 Port O'bd		11.	2	PSHELL	
	93072 Bottom Floor Fr.61 Port Inbd		11,	2	PSHELL	
	94374 Iank Assy Iop Pit		1.	2	PSHELL	
	95744 Bottom Floor Fr.63 Port intd		10	2	PSHELL	
	90984 Bollom Floor Floor Port Inda		10.	2	PSHELL	
	PROF 97511 Bitk top Fwo		11	2	PSHELL	
	99592 Bottom Brkt Fr 64 Port O'bri		11.	2	PSHELL	
	101234 Tank Bhd 1500 Port		8	2	PSHELL	
	101294 Tank Bhd 1500 Port		8	2	PSHELL	
	101938 Bottom Brkt Fr.62 Port O'bd		11.	2	PSHEL	
	103507 Bottom Floor Fr.62 Stbd Inpd		10.	2	PSHELI	
	103792 Bottom Girder 2500 Port		11.	2	PSHELL	
	🔆 🔲 104133 Tank Top Fwd		9.	2	PSHELL	
	105044 Tank Assy Top Pit		7.	2	PSHELL	
	🔆 🗾 105955 Tank Bhd 1500 Port		8.	2	PSHELL	
	🚽 🙀 📕 106274 🛛 Tank Top Fwd		7.	2	PSHELL	
					1.5.4	COF Locks
	PROPERTY				tota	635 selec

From Ship Constructor to ANSA

- Batch Middle skin extraction
- Auto mesh
- Reconstruct and auto connect
- Output as solver format

Geometry checks

Intersections

Model simplification

- Identifying unchecked faces, needle faces, collapsed CONS, triple bounds, overlaps, cracks
- Treatment of holes, fillets, chamfers, features

ß

Handling pattern-wise faces & parts

- Substitute geometry with Linked Faces
- Create symmetry, mirror or translation Faces

Middle skin extraction

Special tool for middle skin extraction creates new geometry

Maximum Thicknocc	
Offset Type :	Offset by :
 Geometry Link 	 Distance Thickness Factor
 Delete Original Face Apply Estimated Thi Create New Propert 	s ckness y
Treat Chamfers	ode
Similarity Factor	

ß

Middle skin extraction

Fully automatic middle surface extraction creates FE Model

Automatic middle skin extraction and assembly

Shell Meshing

Mesh for Structural Applications: Sheet-metal components

Shell Meshing

Numerous quality criteria

Shell Meshing

Reconstruct shells and beams

Reconstruct shells and the attached beams at the same time

Batch meshing

- Definition of meshing parameters and quality criteria
- Features treatment and model simplification
- Automatic meshing and quality improvement

Local refinement

Local mesh refinement of geometry mesh and FE

Automatic definition of geometry from FE model

Volume Meshing

Automatic detection of all valid volumes and sub volumes

ß

Volume Meshing

Tetrahedral Mesh

Volume Meshing

Hexa Meshing

ß

HexaBlock meshing

Hexa meshing based on block structures associated to the model

Stiffeners creation using beams

Creating database of cross sections of any shape

Stiffeners creation using beams

Creating stiffeners using beams with a selected cross section

Stiffeners replacement with beams

Replacement of standard cross section reinforcements with beams

Calculating Cross Sections

- Extraction of Cross Sections from the geometrical model
- Editing of Cross Sections
- Calculating geometrical results (A, ly, lz, etc..) neutral axis stresses and moments

352E-01

3 354E-01
Mass distribution

Applying additional mass to model by fulfilling balance criteria

ß

Tank Tool

Calculating the level of cargo in a tank

ß

Waterline calculation

Calculating the waterline for variable ship loading

Dedicated tools for Marine & Offshore applications

Wave profile creation

✓ Sinusoidal ✓ Trochoidal

Ship balance calculation

Pressure loads application

- Automatic recognition of tanks
- Definition of load properties
- Exclusion of areas from pressure application
- Pressure application on selected tanks

D D	lager			_
ну ва	lance	_		
Wave	Profile			
Loadir	ng			
Condi	itions			
File			+ E	Create
Press	ure			
Tank	% Level	Density	Gravity	
1	50	1024	9.81	
2	70	1024	9.81	-
3	70	1024	9.81	~
4	70	1024	9.81	~
5	70	1024	9.81	~
6	70	1024	9.81	~
7	70	1024	9.81	*
8	70	1024	9.81	*
9	70	1024	9.81	4
10	70	1024	9.81	*
12	70	1024	9.01	2
13	70	1024	9.81	~
			5.02	<u></u>
1	Detect	1	5	Select
-				
Exclu	de PIDs ke	eyword		
				1000000
				Apply
Mass	Balance	Buoyanc	У	
Shear	Force Be	ending Mo	ment	

Loads application through mass

Sub-structuring and Sub-modeling

Local refinement at the areas of interest

Id: 1

0K

- Output local and global models separately
- Merging local and global back to one model

Mapping CFD results to FEA models

ß

www.beta-cae.com

Connection Manager: Bolts

Automated Contact definition

Analysis Set-up

Material database

- Loaded automatically during start-up
- Can load one MatDB per deck
- Materials update from MatDB:
 - By material name
 - By material id

Automatic transfer of curves and tables between frequently used materials

Analysis Set-up

Process Automation

Process Automation

www.beta-cae.com

Shape optimization using the Morphing Tool

Parametric morphing applied on FE or geometry

Shape optimization of the bulbous bow

- Morphing Tool controls model and fluid mesh simultaneously
- Shaping is performed without the need of re-meshing
- Design Variables are defined at the Optimization Task
- Morphing results are simulated

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
A A A A A A A A A A A A A A A A A A A

To Current

2. 0

1. 0.

Apply CV

0.8 0.

0

0.8

00 DD -0.5

Discrete Values

Animate

Animate

Animate

EDV

Real

Rea

Real

Bounds

C

lask items

Steps. 10

20ms

1

Name

-1 bulbous z

-Z bulbous x

3 bulbous width Animate

Frame rate (ms): 40 (fps: 25)

Shape optimization of the bulbous bow

Definition of Design of Experiments

ß

Shape optimization using the Morphing Tool

Volume mesh morphing

Shell thickness optimization

Automatic definition of design variables for shell thickness and creation of the Optimization Task

	0	CAR					- 校	
	Id	Name	τ	MID1	MID	type		4
		5 hull above w	ater 0.018	1	-	PSHELL		-
		6 hull_below_w	ater 0.018	1		PSHELL		
		11 sea_level	1.	1		PSHELL		
		12 storage_hatcl	hes 0.016	1		PSHELL		
		15 inner	0.018	1		PSHELL		
		18 Walls	0.0115	1	4	PSHELL		
		20 Horizontal Pl	ates 0.0125	1		PSHELL		
		21 Sections	0.018	1		PSHELL		
		25 L_0.1*0.3_old	Cide 0.0135	1	3	PBEAM		
		28 Inner_Hopper	_510e 0.0125	1		PARELL		- 1
		31 L 0 1+0 3	1011gs 0.016	1				
	FROPERTY	31 1_0.1 0.3	Available field	s for list: E	ntities	=1 1		d.7
3	1.00-0-0-0-0							21
			START	D				
DPTIMIZA	C 2	K Q	FID STAR ▼ T TRANSF	ARENCY		La la	\$	
	C 2	к Q-	Min Value	ARENCY	nt Value	Max Value	*	
	Name		Min Value	Currer	nt Value	Max Value	e	4
DPTIMIZA	Name	MIZATION_TAS	Min Value	ARENCY	nt Value	Max Value	¢	-
DPTIMIZA Id - 1 1 7	Name	MIZATION_TASI	Min Value (1 0.01125 0.01125	0,0125	nt Value	Max Value 0,01375 0,01375		+
Id 1 2 3	ATION TAS C 2 Name D-OPTI E-P	MIZATION_TASI	Min Value K_1 0.01125 0.015199	0,0125 0,0125	nt Value	Max Value 0.01375 0.01375 0.0198	e	
Id I I I I I I I I I I I I I I I I I I	Name P P P P P P P	MIZATION_TASI	Min Value (1 0.01125 0.016199 0.016199	Currer 0,0125 0,0125 0,018	nt Value	Max Value 0,01375 0,01375 0,0198 0,0198	¢	+
Id 1 1 2 3 4	Name P P P P P P P P P P P P P	MIZATION_TASI SHELL_20_T SHELL_28_T SHELL_21_T SHELL_29_T SHELL_29_T	Min Value K_1 0.01125 0.016199 0.016199	Currer 0,0125 0,0125 0,018 0,018	nt Value	Max Value 0.01375 0.01375 0.0198 0.0198	¢	
DPTIMIZA Id	Name Name	MIZATION_TASI SHELL_20_T SHELL_28_T SHELL_28_T SHELL_29_T SHELL_29_T SHELL_18_T	Min Value (1 0.01125 0.016199 0.01035	Currer 0,0125 0,0125 0,018 0,018 0,0115	nt Value	Max Value 0.01375 0.01375 0.0198 0.0198 0.01265	e	1
DPTIMIZA Id 1 2 3 4 5 6	Name Name	MIZATION_TASI SHELL_20_T SHELL_28_T SHELL_28_T SHELL_29_T SHELL_29_T SHELL_18_T SHELL_18_T	Min Value (1 0.01125 0.016199 0.016199 0.016199	Currer 0,0125 0,0125 0,018 0,018 0,018 0,0115 0,018	nt Value	Max Value 0.01375 0.01375 0.0198 0.0198 0.01265 0.0198	e	1
DPTIMIZA Id	Name Name D-OPTI D-PTI D	MIZATION_TASI PSHELL_20_T PSHELL_28_T PSHELL_28_T PSHELL_29_T PSHELL_18_T PSHELL_18_T PSHELL_15_T	Min Value K_1 0.01125 0.016199 0.016199 0.016199 0.016199	Currer 0,0125 0,0125 0,018 0,018 0,018 0,018 0,018 0,018	nt Value	Max Value 0.01375 0.01375 0.0198 0.0198 0.0198 0.0198 0.0198	¢	4

Creating / importing features parametrically

Coupling ANSA and META to parametric optimizers

ß

Coupling ANSA and META to parametric optimizers

- LS-OPT of LSTC
- modeFRONTIER of ESTECO
- OPTIMUS of NOESIS

- Isight of SIMULIA
- Heeds of Red Cedar

EPILYSIS

Solver for FE analysis

EPILYSIS

EPILYSIS Characteristics

Programming Language

- C++
- Double Precision

Quality

- Benchmarks accurate (NAFEMS, SFM and other More than 3500 tests)
- Robustness
- Repeatability

Performance

- Shared Memory Parallel Processing (SMP)
- Automatic utilization of system resources without time consuming tuning
- Multiple high-performance direct sparse linear solvers

Easy to Use

B

EPILYSIS

Linear analyses

Non - linear analyses

Optimization

Model definition for CFD analysis

Fully automatic Curvature Dependant surface meshing

B

Model definition for CFD analysis

Boundary layers generation

- Auto exclude or collapse areas
- Controlled Layer Squeezing to avoid intersections
- Layers from selected areas with different settings
- Layers from zero-thickness walls

Advanced boundary layers generation

Boundary Condition type specification for various CFD solvers

Model definition for CFD analysis

Fast and robust volume meshing for all types of elements

www.beta-cae.com

ß

Model definition for CFD analysis

Fast and robust volume meshing for all types of elements

Model definition for CFD analysis

Fast and robust volume meshing for all types of elements

Viewing results in META

Viewing results in META

www.beta-cae.com

META Reporting capabilities

Creating sections, annotations, statistics, reports...

id=531080, val=94080168	=466532, val=5	2396692							
	Id COD Max CC1	At :: C2 Min ::	C3 At: C4 Range	:: C5 Range%	C6 Elems: C	7 Nodes :: (28 Mid :: (C9 Type :: (*	T
	1. 0	15 0	15 0	0.0	1596	1669	1	PSheil	2
	4 1.17E+08	20285 0	30 0	0.0	44736	45860	1	PShell	100
	5 8.36E+07	77879 0	255 0	0.0	49428	50462	1	PShell	1
	6 1.65E+08	457721 0	45 0	0.0	75308	75655	1	PShell	00-
	10 0	724 0	724 0	0.0	1282	1270	1	PShell	
	12 1.5E+00	204557 0	356576 0	0.0	9100	10/50	1	PSnell	
14-445499 VSI-71393815	14 0	27406 0	27406 0	0.0	680	1000	1	PShell	
id=40433, vai=71333010	15 1.4E+08	4491 0	219 0	0.0	73052	76132	i	PShell	
	16 0	1142 0	1142 0	0.0	2382	2839	1	PShell	
	18 1.64E+08	170199 0	2191 0	0.0	41870	41542	1	PShell	
	19 0	10234 0	10234 0	0.0	1402	1420	1	PShell	100
	20 7.72E+07	260032 0	303 0	0.0	94166	102708	1	PShell	M
	21 7.68E+07	536753 0	22 0	0.0	155324	178978	1	PShell	P
	22 0	10518 0	10518 0	0.0	8291	8886	1	PSnell	a
	28 133E+08	170411.0	59 0	0.0	11352	12242	1	PSheil	
	29 7.42E+07	169229 0	1 0	0.0	4574	5680	1	PShell -	
			4 4					F	8
	All Invert Visible F	Pick Filtering:							-
	Model 0	• Functio	bh	• Al	0	-	All Entities	5	*

META Reporting capabilities

OFFSHORE

Offshore models

Geometry Handling

> 75% TIME & EFFORT REDUCTION ON :

- Geometry Creation
- Geometry Clean Up
- Meshing Generation
- Meshing Refinement
- Automatic creation of symmetrical entities
- Linked with the original entities by symmetry, translation, rotation & transformation
- Actions applied to the parent entities are applied automatically to the linked ones

Batch Meshing Tool

- User defined mesh parameters and quality criteria
- Automated part assignment in different scenarios
- Special treatment for specific areas of the model defined with boxes

Generic Entity Builders GEBs

Riser and Mooring Forces

- Performing actions determined by predefined rules
 - Automated application on different mesh representations
 - Use of library items

BOUNDARY

DEFINITION

CONDITIONS

 \succ

Connections Handling

Hull and Deck connection

- Connection lines definition for application of various FE representations
- User specified connection parameters
- Massive connection generation

State of Equilibrium

Fully loaded SEMI platform

- Auxiliary mass distribution
- Waterline calculation in Tank Tool
- Buoyancy application with Marine & Offshore tool

Results in META

0:oilplatform-sol6.op2 : Stresses,Von Mises,Max of Top Bottom : SUBCASE 1 1:wave_high.nas : ORIGINAL STATE 2:superstructure.nas : ORIGINAL STATE ::OILPLATFORM-SOL6:CASE2-HIGH_LEVEL: SL

State of Equilibrium

Fully loaded SPAR platform

Results in META

0:SPAR_sol3.nas : (fo1 375643) : Stresses,Von Mises,Max of Top Bottom : SUBCASE 1 2:wave_h64670.nas : ORIGINAL STATE 3:accessories.nas : ORIGINAL STATE

- x x
- Von Misses stresses
- The most Critical area
- Displacements

CASE STUDIES

Presented at: COMPIT 2014 12-14 May, Redworth, UK

Process workflow

Matrix analysis

- Statically indeterminate multi-supported beams
- Bearing stiffness and clearance
- Dry dock conditions

FE analysis

- Hydrostatic equilibrium
- Hull deformations calculation
- Determination of vertical displacements at the bearing locations

RE-evaluation

 Re-evaluation of static shaft equilibrium

Automatic meshing using the Batch Meshing tool of ANSA

atch Mesh Manager						_
New, Read Scenario Autoload	Run					
Name Co	ntents Me	sh Parameters	Quality Criteria	Sta	atus	7.
Meshing_Scenario_1	29			ł	Comp	leted
Default_Session	29	1m	Untitled	-	Compl	eted
Meshing_Scenario_2	18				Comp	leted
Default_Session	18	0.2m	Untitled		Compl	leted
	0				Empt	v
V Default Session	Ó	Untitled	Untitled		Empty	

Global Meshing Parameters (Scenario I)						
Element length	0.95 m					
Filling openings with diameter	< 1m					
Engine room floor Meshing Parameters (Scenario II)						
Element length	0.2					
Filling openings with diameter	< 0.5m					
Quality Criteria						
Skewness (Nastran)	30°					
Aspect ratio (Nastran)	3					
Angle (Quads)	45-135°					
Angle (Trias)	30-120°					
Minimum Element Length	0.01 m					
Maximum Element Length	1.5 m					

Stiffeners representation with BEAMS and TRUSS

- Application of hydrostatic pressure due to buoyancy
- Application of loads as mass connected with RBE3
- Balance of the hull and Inertia Relief application

- Set up reference line
- Define the static conditions of the vessel
- Modeling the shafting system

Computational Results

Bearing vertical offsets at different loading conditions

Bearing	Initial case (even keel)	Loading Condition 1	Loading Condition 2	Loading Condition 3
Aft S/T	-0.06	-0.06	-0.06	-0.06
For S/T	0.00	0.00	0.00	0.00
Intermediate	-3.9	-1.89	-4.66	-3.12
M/E 1	-6.60	-2.27	-8.99	-2.44
M/E 2	-6.60	-1.96	-9.32	-2.37
M/E 3	-6.60	-1.50	-9.85	-2.28
M/E 4	-6.60	-1.06	-10.44	-2.20
M/E 5	-6.60	-0.63	-11.07	-2.14

Reference Condition

■ Loading Condition No. 1

Loading Condition No.2

Loading Condition No.3

Offshore Wind Turbine Geometry Parameterization and structural analysis

- Structural analysis of offshore wind turbine aiming to see displacements and stresses under load.
- Highly detailed model including ribs and stiffeners
- Pressure loads were auto calculated and applied both for the sea hydrostatic pressure and the Ballast reservoirs.
- Gravity and an equivalent concentrated air pressure at the turbine nacelle

The geometrical model was parameterized in order to automatically generate different designs regarding:

Design Of Experiments

With this automated functionality, Multiple designs can be created with different configurations as a Design Of Experiments study, using several different algorithms (ULH, Random, Full Factorial, Taguchi) to provide the Design Variable values

Crane Lifting simulations with the Kinetics Module

Kinetic mechanism definition

Rudder Optimization Study

Rudder Optimization Study

0:rudder_from_cfd.odb : propeller aspacing : Contact pressure,All Surfaces : : STEP 1 (AnonymousSTEP1),TIME 4.00000006E-01,

0:rudder_from_cfd.odb : propeller aspacing : Magnitude of Displacements : STEP 1 (AnonymousSTEP1),TIME 4.00000006E-01,

0:rudder from cfd.odb : propeller aspacing : Stress components, Von Mises, Max of In Out, Centroid : : STEP 1 (AnonymousSTEP1), TIME 4.0000006E-01.

Objectives

0.131081

_ ^Y ,

- Minimize maximum contact pressure
- Minimize Model mass

Constraints

- Maximum stresses
- Maximum deflection

Rudder Optimization Study

✓ 12.5% Maximum pressure reduction

✓ 7.98% Mass reduction

Flex Joint Contact analysis

Automated Bolts recognition

Automated Contact Detection

Boundary conditions

- 1st load case: axial riser force
- 2nd load case: bending riser force

Flex Joint Contact analysis

Ship collision analysis

- Replacing part of the model with rigid body and equivalent mass
- Defining boundary conditions and contacts
- Local refinement at the collision area

Ship collision analysis

Viewing results with META

Introduction

- Free fall lifeboats are found in oil platforms and large transport vessels.
- Carry up to 70 passengers
- Free fall to evacuate as fast as possible
- Safely submerge and surface away from the host structure

The initial position of the lifeboat is not fixed due to:

- Unstable host structure
- Possible damage in the structure
- Weather conditions variation

Aim Of Optimization

Aim Of Optimization

The aim is to achieve a robust trajectory for the lifeboat that at any circumstances must evacuate the passengers safely

To achieve that, it was needed to:

- ✓ Reduce the accelerations on the passengers
- ✓ Surface as far from the structure as possible (>40m)

Constraints

- Minimum distance from the host structure (40m)
- Maximum CAR* Index value (1)

Objectives

• Minimize the CAR Index value

*CAR: Combined Acceleration Ratio

FE Model

Lifeboat weight: 9517kg Capacity: 30 Persons Material: Glass Fiber Reinforced Plastic (GFRP) Length: 10.2m Width: 3.4m

Added weight of passengers and equipment: 3750kg

ß

ALE method

The Arbitrary Langragian Eulerian method was used to simulate the air and seawater couple using solid HEXA elements

✓ The ALE interaction is defined through an LS-DYNA constrained entity that defines the settings of the interaction between the two bodies

Position Parameters

Taking into account the instability of the host structure, three position parameters were defined using morphing functionality and defined as Stochastic variables for:

B

Shape Parameters

Two shape parameters were also defined using morphing functionality, modifying the shape of the lifeboat

✓ Nose Shape

✓ Rear Shape

Kinematics

A build in Kinematic solver was used for the calculation of the sliding and free fall step of the process

- Two Kinematic rigid bodies were defined. One for the life boat and one for the launch platform.
- ✓ One Ground point was also necessary to define Kinematic Joints
- ✓ A Kinematic contact pair was defined between the two rigid bodies
- ✓ Friction of 0.15 consistent with nylon blocks use

Kinematics

A build in Kinematic solver was used for the calculation of the sliding and free fall step of the process

- \checkmark With Gravity as the load, the solver calculated the slide and the free fall
- ✓ A Kinematic sensor identifies the distance from the sea level and stops the free fall calculation
- ✓ The calculated velocity vectors are applied as initial conditions

Post Processing

Combined Acceleration Ratio-CAR

The first response acquired at each iteration was the CAR index value, calculated by the nodal accelerations at selected measurement points

$$CAR = \max \sqrt{\left(\frac{a_x}{18g}\right)^2 + \left(\frac{a_y}{7g}\right)^2 + \left(\frac{a_z}{7g}\right)^2}$$

Where ax, ay, and az are the in-to-seat accelerations and g is the gravity

Post Processing

Distance from host structure- Motion Pattern

The second response acquired at each iteration was the distance between the host structure and the rear most point of the lifeboat. This measurement was directly dependent on the Motion pattern

Post Processing

Distance from host structure

The second response acquired at each iteration was the distance between the host structure and the rear most point of the lifeboat

Optimization

modeFRONTIER

LS-DYNA

OptimizerSetup **Response Variables** Responses Add Print Response Values Update Response Values Current All Remove Current All Rename Response History Variables Histories Add **Print History Values** Update History Values All Current Remove Current All Rename History

from host structure

X

\$

¥

\$

¥

Export Session

Results

*d3plot

ß

Response Extraction

Repeated Response acquirement

Using an automated post-processing process, the two responses are acquired at each iteration and the results are fed to the optimizer software

Response Extraction

Repeated Response acquirement

Using an automated post-processing process, the two responses are acquired at each iteration and the results are fed to the optimizer software

Optimization process

Robustness Optimization

modeFRONTIER was used in this study, to couple ANSA, Meta and the FSI solver.

- ✓ Built-in ANSA & mETA Nodes
- ✓ Stochastic values for the three position input variables
- ✓ Constraint and Objective Stochastic responses

Results

Scatter Chart – Feasible designs

Feasible designs were close to 50% of the total of 400

Safran Open 60' race yacht composite mast modelling for crashworthiness analysis

Composite materials

Elements orientation

Mast modelling

ANSA and META contribution to the study of Safran Open 60' race yacht crashworthiness Philippe Biagi, Safran Engineering Services, 4th ANSA & META International Conference, 2011

Static Analysis for Offshore Models

www.beta-cae.com

Wave on SPH case study

- Volume detection
- Automated SPH creation

Results in META

Thank you

Stay connected

www.beta-cae.com

support ansa@beta-cae.com

social media

www.beta-cae.com

