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ABSTRACT

Behind the history of objects invented and produced by man, is a history of incremental
design improvements, aiming (for example) at lighter, more durable components, or at stiffer
or softer structures, or at resonating objects at pleasant tones, and so on.

Today, where powerful computers and complex computer software of finite-element methods
(FEM) are available for structural analysis, the usual process of design improvement is still
based upon the results from the analyses, even if FEM can be extended to the synthesis of
components and structures.

The aim of the course in Design Improvement offered at RMIT Melbourne is to educate and
train students in computational methods of design synthesis. The course is offered to
students in the sixth semester, following the introduction of linear FEM in semester five.

The prerequisite of the course is a sound understanding of FEM concepts taught in the
introductory FEM course. The theoretical background of mathematical methods of
optimization is reviewed first, and then exercised on selected applications. This is followed by
learning the concept of design sensitivity. Finally, the problem of “reconciling” the
discreteness of finite-element mesh with the smoothness of a CAD design is presented. A
series of homework and exercises serves for gaining experience with selecting the most
appropriate method for the solution of a given problem.

Each lesson is accompanied with solved examples and tutorial problems. Students are
required to validate the solution by any alternative method available to them. At the end of
the course, students solve one larger practical problem of their own choice, to demonstrate
the level of their competence.

The software ReSHAPE, which has implemented most of the available methods for design
improvement is used, along with the pre- and post-processors ANSA, HyperMesh and
Patran.
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1. INTRODUCTION

At present, the most common computational analysis technique in engineering and sciences
is the finite-element method. Even in its simplest linear implicit form, it has become a
practical and reliable tool for calculation of deformations, stresses, natural frequencies,
buckling critical forces, and so on. Based on the results from these calculations, designers
decide on design modifications for improved performance. The decision is based on the
designers’ knowledge, experience and more often than not on their “engineering feel”.



On the other hand, mathematical methods of optimisation, allowing the calculation of the best
configuration of variables for prescribed objectives with constraints, have been known for a
long time and have been applied successfully not only sciences and engineering, but also in
economy, transportation, and other “less” scientific fields of general knowledge. The
difficulties with their application to the solution of finite-element models are caused by the
discreetness of the models, which consist of finite number of “communication points”, called
nodes, and of continua between them, called elements, with internal displacement being
approximated by displacement fields, defined by nodal displacements as parameters.

Surely, a given finite-element model can be improved by repeated analyses (direct search,
random walk, steep descent, etc.), when design parameters are iteratively changed by use of
a selected strategy until a satisfactorily improved model is obtained (see e.g. [1]). Each
iterative step requires n+1 analysis, if the number of parameters is n, therefore these
methods are applicable to the solution of described by a very limited number of parameters.

In the Design Improvement course, the students start with learning and understanding the
theoretical background of selected mathematical methods of optimisation. They then acquire
basic skills in using the software ReSHAPE [2], which has implemented most of available
methods. Each lesson is accompanied by solved examples and by tutorial problems [3]. The
solutions of the tutorial problems can be obtained after demonstrating that the solution has
been attempted by the student. Finally, each student solves more complex problems of their
own choice, and presents the results in a prescribed format of a publication paper.

Students are required to validate numerical solutions of each problem by any alternative
method available to them, be it hand calculations of a simplified model, solution of a similar
problem, or the best of all, an experiment, before attempting any improvement. It is really
embarrassing trying to “improve” something which is not correct on the on-set.

Also, students are reminded to keep in mind that this is an engineering course in design
improvement, not a mathematical course in optimisation. Surely, the numerical methods
used in ReSHAPE are conforming to mathematical theories. In practice, however, the model,
numerical methods and subsequently, the solution can only be approximations. In many
cases there is no optimum design at all, only an improvement of the existing design.

2. ANALYTICAL METHODS OF OPTIMIZATION (e.g. [4])

In the first lecture, the analytical method of determining the minimum or maximum of a
function z = f(x,y) of two variables x and y, with a constraint g(x,y) = 0 is reviewed. The
method of Lagrange multipliers is revised and a new compound function is created as

® =f(x.y) +A-g(xy),
and then differentiated with respect to x, y, and A. The solution of the equations
0D(x,y)/0x =0, dDP(x,y)/dy =0 oP(x,y)/oA =0
delivers the unknowns’x, y and A for the constrained minimum or maximum.

The method is demonstrated on the problem of a rectangle of height x and width y, where the
objective is to find a rectangle of maximum area A =xy, with unchanged perimeter p = 2(x+y).
The compound function is @ = xy + A(p — 2(x+y)). Then the solution results from
0PLxX=y—2A=0, 0PLOy=x-2A=0, and JoPLOA=p-2(x+y)=0.

Solving for x, y and A gives the solution x =y =p/4, and A= p/8.



Subsequently, the students solve the problem graphically, for p=40 mm. The solution is
shown in Figure 1, with curves A=const. and the straight line of the constraint p = 2(x+y) are
depicted. The solution is clearly at the point (10,10) with maximum area of 100 mm?.
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Figure 1: Solving the problem of max(A=xy) with a constraint p=40mm, graphically.
As homework, students are asked to maximize the area of an isosceles triangle with its base

of 2x and its height of y, keeping the circumference unchanged. They are made aware of an
important fact: the constraint is now a curve, not a straight line.

3. NUMERICAL METHODS OF OPTIMISATION

3.1. METHODS OF STEEPEST ASCENT WITHOUT CONSTRAINTS

It becomes clear that more complex problems of optimization (even in two variables) cannot
be solved analytically. The obvious choice is one of the numerical iterative techniques. The
method of steepest ascent is one of such methods: it approximates the continuous gradient

curve by a succession of straight lines.

Students solve the previous two problems with this method, again using Excel (with function
formulae and iterative procedure), or in MATLAB. The result is shown in Figure 2.
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Figure 2: Contours with lines of steepest descent beginning from the point (10,1)



3.2. METHODS OF STEEPEST ASCENT WITH CONSTRAINTS

After analyzing previous results (shown in Figure 2), students are made aware of problems
related to the continuation of the iterative process: that some action has to be taken after the
constraint has been crossed, with necessary sub-iterations to “land” on the constraint; that
next steps have to follow the constraint curve; and all that with some prescribed precision.

As the solution, the method of projected gradient is then presented, using the Gram-Schmidt
ortho-normalization method. The objective function in n dimensions is written as y=f(x) and
the constraint as c=g(x), where x is an n-dimensional vector of unknown variables.

The steepest descents of the objective function and the constraint are defined as row vectors
dy/ox and dg/ox.
The new direction of the objective function is calculated as follows:
(OV/0X )new = (OV/OX)ow + N. OG/OX .

The unknown multiplier A is calculated from the requirement that the new direction must be
orthogonal to the direction dg/dx i.e. (3g/dx):(Ay/x) hew = 0. The parameter A is then
calculated from

= — (y/dX) o - (89/0X)" / (8g/OX) -(g/dx).

Then the new direction (9y/0x).ew Can be calculated.

In the above example, when the constraint is reached, (3y/x)oy = [ 0.35, 0.94], and (9g/dx)"
=[1, 1]. Then A = — 0.645, and (9y/0x)new = [-0.295, 0.295], i.e. along the straight line of the
constraint towards the maximum.

Satisfying multiple constraints during the iterative process is a complicated problem. Firstly,
some detection procedure has to be designed, which could decide whether a constraint
should be considered as active or not. This would require certain e-band to be defined
around the constraint. The constraints outside the e-band are ignored, but those inside are
activated and the objective is projected on the hyper-tangent to the hyper-line of the
intersection of constraint hyper-surfaces.

As homework, students are asked to solve the previously solved problem of the isosceles
triangle, simulating the whole process by using Excel or MATLAB.

3.2. DIRECT SEARCH METHODS

A brief review is presented about the direct search methods, such as the piece-wise simplex
method, the complex method, the random search and similar methods. It is emphasized that
these methods can be used for any problem, linear or non-linear, but at the price of extreme
computing costs because for an n-dimensional problem, n+1 analyses are required.

4. FINITE-ELEMENT METHODS IN OPTIMISATION

4.1. NODAL (RAW) SENSITIVITY

In the previous chapter, the gradient vector has been calculated either analytically or
numerically by repeated re-analyses of the perturbed model. This is hardly efficient for large



finite-element models. If possible, the standard implicit linear finite element method should be
employed for design improvement. It is then natural to ask the question: how much will the
value of a quantity (objective) change if one co-ordinate of a node is changed.

Let us define such a change of the response r as the nodal sensitivity as a vector
s =dr/dx,

where the column vector x contains co-ordinates of all nodes participating in the design
change, thus creating a design domain. If there is a design constraint to be satisfied, the
sensitivity of the constraint response is calculated in a similar way. In ReSHAPE, the
response sensitivities are calculated analytically.

Students get acquainted with ReSHAPE by solving the previous “rectangle” problem
modeling it in finite elements. Figure 3 shows the rectangle of dimensions 100x10 mm
meshed with one plate element 1 and four bar element 2 to 5. It is required to maximize the
area while keeping the perimeter constant.
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Figure 3: A rectangle meshed with one plate and four bar elements

The model has been meshed in a pre-processing program and exported as a NASTRAN
input file.

The objective of maximum area and the constraint of constant perimeter are defined by the
following command file:
reshape(improvement)
control
steps(n=10,s=1)
responses()
area(target=max,tol=0,stype=2d)=elem(all)
length(bound=hold, tol=0,stype=1d)=elem(all)
process(raw)
domain(xy)=elem(1thru5)
locked(x)=node(3,4)
locked(y)=node(1,3)
end

Most of the command is self-explanatory. The parameter stype allows using elements of
different types in the domain, but selecting the appropriate types for objective and constraint
without adding (in common nodes) sensitivity contributions from different elements.

The optimum configuration achieved by a number of iterations is shown in Figure 4.
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Figure 4: A rectangle with maximum area and unchanged perimeter



As an important exercise, students are asked to calculate and record individual sensitivities,
i.e. first for the change of the area of the plate element, and then for the change of the
perimeter using the beam elements, and use them for hand calculation of the constrained
sensitivity by projected gradient method. The result is compared with the constrained
sensitivity as obtained from the program. In this way, the students see that the projected
gradient method used in ReSHAPE for models of any size is the same as the one used in
hand calculation of the problem with two variables.

As home work, students solve the problem of the isosceles triangle, and also the problem of
a quarter of a circular ring using local cylindrical co-ordinates.

4.2. APPLICATION OF NODAL (RAW) SENSITIVITY TO TRUSS STRUCTURES

In the previous lesson, the use of the raw improvement process was successful only
because there were no internal nodes in the model. If the mesh of the rectangle contained
internal elements and nodes, only the outside layer of plate elements would change, which
would stop the iterative process long before the maximum were reached.

For truss and beam, elements are connected by isolated nodes. Therefore the use of raw
improvement process can be successfully applied for shape improvement, as demonstrated
in the following example.

A simple two-dimensional truss structure is shown in Figure 5. It is loaded by a concentrated
load in node 3 and fixed in nodes 1 and 5. The NASTRAN input file for the example has been
created by a preprocessor (Medina, Hypermesh, Ansa and Patran are generally used by
students).

Figure 5: The truss structure with applied loading

The objective is to reduce the vertical displacement in node 3 by 25% (OBJECTIVE) but
keep the mass of the structure unchanged (CONSTRAINT).

The RESHAPE command file for the iterative design improvement reads:
reshape(improvement)
control
steps(n=50,s=2)
responses()
displacement(var=ty, target=-25%)=node(3)
volume(bound=hold)=elem(all)
process(raw)
domain(xy)=elem(all)
locked(y)=node(2THRU4)
locked(xy)=node(1,5)
end

The improved structure is shown in Figure 6. The displacement was reduced from 2.2 mm to
1.65 mm i.e., reduced by exactly 25%. The mass remained unchanged.



Figure 6: The improved truss structure

As homework, students solve a truss structure of their own design and exercise various
combinations of objectives and constraints, including the use of more than one response for
objectives or constraints.

Possible Objectives Possible
Constraints

Minimize volume Displacement

Maximize 2™ modal frequency 1 modal frequency

Minimize reaction force in ‘X’ direction
Minimize axial force in a member
Two frequencies to prescribed values Constant volume

5. HOW TO RESHAPE FINITE-ELEMENT MODELS WITH CONTINUOUS ELEMENTS
5.1 NODAL (RAW) SENSITIVITY

The unknown variables calculated in ReSHAPE are nodal sensitivities i.e., the sensitivities of
selected responses to the change of nodal co-ordinates. If r is the scalar value of a response
(e.g. a component of a nodal displacement, a component of the stress in an element, a
natural frequency etc.), and x is the vector of nodal co-ordinates, the nodal sensitivity s is
defined as a row vector:

s = dr/dx .

The nodal (‘raw’) sensitivity is calculated in ReSHAPE in all selected nodes analytically. This
is, however, of little use for a detailed re-shaping of a component because the original
smoothness of the model cannot be preserved (Figure 7).

Figure 7: PROCESS(RAW) shape change for increased bending stiffness

After fifty iterations, the maximum displacement was reduced substantially, because a
double-corrugated plate is indeed the stiffest structure possible. The “improved” plate,



however, is not conserving any smoothness, because the raw process treats every node
individually, not as belonging to a smooth surface.

To overcome this problem, generalized co-ordinates q are introduced and the relationship
X =x(q)
called mesh-geometry associativity, is formed.

This relationship can take many forms, with generalized co-ordinates such as:
« Modal vectors (q being the amplitudes of individual modes),
« Displacement vectors (q is the scaling factor of the applied virtual load),
« Splines (q being the spline parameters), or
« Influence functions (with q as generalized co-ordinates, calculated in user defined
control points).

Underlying the whole concept of smoothing is the idea of creating a best fit to nodal changes
Ax. Without smoothing, this change would be proportional to the sensitivities dr/dx. To
achieve a smooth change, the nodal sensitivities must be first recalculated as the
sensitivities dr /dqg of generalized co-ordinates q:

dr/dq = dr/dx-dx/dq ,

where the matrix dx/dq is called influence matrix, expressing the effect of a change in g on
the change in x.

The change of design variables Aq by steepest descent is then calculated as:
Aq = a-(dr/dq)" || (dr/dq) ||,

where ||dr/dq|| indicates the norm of the vector dr/dq, and « is the iteration step defined by
the user. The mesh change Ax is then calculated, using the influence matrix dx/dq, as

Ax = dx/dq - Aq .
This process, first from nodal sensitivities to the sensitivities in generalized co-ordinates, and
then, in reverse, from the change of generalized co-ordinates to change of nodal co-
ordinates (re-meshing) is correct only theoretically i.e., for regular meshes and regular
distributions of generalized co-ordinates.
In practice meshes can be very irregular, and the generalized co-ordinates cannot be

distributed regularly either. The remedy is to enforce the same best fit both on the nodal
changes and on the changes of generalized co-ordinates, i.e.

AX'. Ax = Aq'. Aq,
Resulting into the condition of ortho-normality
(dx/dq)". (dx/dq) = I.

The ortho-normalization can be achieved, for example, by Gram-Schmidt ortho-normalization
algorithm, or by any other suitable method.



5.2. PROCESS FUNCTION

In ReSHAPE process function, virtual displacement fields of special shapes (so called
influence functions) emanate from selected control points (see ReSHAPE Theory Manual).
These fields have unlimited support, i.e. they permeate the whole space whilst not
disappearing at the boundary of the structure. This has an advantage that all internal nodes
can be easily affected; the disadvantage, however, is that also the nodes on the fixed
boundaries (command locked) will move. The remedy is to generate functions also from all
fixed nodes, and subsequently enforce constraints of no change at these nodes.

As an exercise, the process is again applied to the solution of the problem of a rectangle.

Figure 8 shows a mesh. It consists of 8 by 8 rectangular plate elements and 4 by 8 bar
elements around the perimeter.
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Figure 8: Mesh of a 100x10mm rectangle

The iterative improvement process is controlled by the following set of ReSHAPE commands:
reshape(improvement)
eset(top)=2
eset(left)=3
eset(bot)=4
eset(rite)=5
control
steps(n=100,s=0.5)
responses()
area(target=max,stype=2d,tol=5%)=elem(all)
length(bound=hold, stype=1d,tol=0)=elem(all)
process(function)
domain(xy)=elem(all)
passive(internal)=set(geom)
locked(xX)=set(left)
locked(y)=set(bot)
fcontrol (wrt=xy)=node(3)
fparameter(boundary)=linear
end

Explanation of three special commands:

1) passive — do not calculate sensitivities either in all or in the infernal nodes of the set,
but remesh, i.e. calculate the influence function in the passive nodes too.

2) fcontrol - In the case of one control point only, the influence function emanating
from the user defined control point (node 3 in the example) is constant in all
directions.

3) fparameter(boundary)=I1inear — enforces a linear change of the influence
function, i.e., the value of the function decreases linearly from the maximum in the
locked point to the value 0 in the user defined control point. The internal functions are
subsequently eliminated by enforcing zero changes in the locked points.

The resulting shape is shown in Figure 9.



Figure 9: Rectangle of maximum area and a constant perimeter.

The method can be applied to any shape. As an exercise, students are asked to use a shape
of their own choice. One such shape is shown in Figure 10. The command files for the
sensitivity and improvement calculations are practically identical with those shown above.
Figure 10 shows the original and the optimized shapes for a skewed and freely meshed
quadrilateral.

Figure 10: Freely meshed quadrilateral of maximum area and a constant perimeter

As home work, students are required to model a 3D solid box and maximize its volume while
keeping the surface area unchanged.

5.3. PROCESS GEOMETRY

The geometry process (as used in ReSHAPE) does not calculate the influence matrix dx/dq,
but smoothes the calculated sensitivities, scaled by user defined step size, to change the
position of nodes.

The sensitivities of the internal nodes of plate elements are theoretically equal to zero.
Numerically, however, they would not be zero and would represent numerical noise resulting
from changing the shape of the elements. For this reason, sensitivity calculations should be
avoided in the internal nodes. The ReSHAPE command passive, serves this reason.

In order to recalculate the mesh, the patch of elements must be defined by patch parameters
in the corner nodes of the patch. Three and four sided patches are allowed in ReSHAPE.

The elements in the individual patches have to be in separate element sets. Then the

ReSHAPE command gset in the reshape block of the command file will calculate the
patch parameters and parametric co-ordinates of the nodes.
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During the improvement process, the new nodes on the outline of the patch are best-fitted
with cubic parabolas (quadratic parabolas in the case of three nodes along the edge, and
straight lines in the case of two nodes). The approximated model using the patches is output
by ReSHAPE, and can be viewed in a post processor.

As an exercise, students are asked to apply the geometry process to the previous example
(Figure 8). The ReSHAPE command file reads:

reshape(improvement)
gset(geom)=1
gset(beam)=2,3,4,5
control
steps(n=50,s=1)
responses()
area(target=10000,stype=2d)=elem(all)
length(bound=hold, tol=0, stype=1d)=elem(all)
process(geometry)
domain(xy)=set(geom, beam)
locked=elem(all)
unlock(x)=node(2)
unlock(xy)=node(3)
unlock(y)=node(4)
end

Note: Unlocking only corner nodes results in boundary consisting of straight lines only.
The resulting shape is identical with the one shown in Figure 9.

5.4. OTHER PROCESSES

There are other processes exercised by students:

process(vector) in three modes of virtual mesh change: using displacements enforced by
external load, using modes of vibrations, and using externally generated loads.

process(traction) where pre-calculated sensitivities on the boundaries are used as virtual
loads to generate virtual mesh change.

process(sizing), applicable to plate and shell elements to change their thickness.

process(topology), changing the pseudo-density of the elements to suggest an improved
structure.

The reader can obtained all the tutorial exercises from [2].

6. STUDENT ASSIGNMENTS

During the second half of the semester, each student works on a more complex problem of
their own choice, which is advised and supervised by tutors. Two problems have been
selected for this presentation.

6.1 Example 1 — Stress reduction in a slotted pipe

A pipe of 200mm length, 100mm radius and 3 mm thickness is fixed at both ends to rigid

plates. One of the plates can rotate about the axis of the pipe and is loaded by a torsional
moment of 5,000,000 Nmm. The pipe has a slot of 24 mm width at the bottom.

11
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Figure 11: Finite-element model of a slotted pipe

The finite-element model of the pipe is shown in Figure 11. The pipe is modeled by thin shell
elements and the rigid plates by rigid constraints (RBE2). The master of the constraint at one
end is fully fixed and the master at the loaded end can rotate around the pipe axis which is
loaded with the moment.

The maximum von Mises stress appears at the four corners with a value of 400 MPa.

The objective is to change the shape of the cross-section of the pipe in such a way that the
von Mises maximum stress is reduced, whilst keeping the pipe prismatic and ensuring that
the total volume does not increased by more than by 10%. As an added manufacturing
constraint, the width of the slot must not change.

ReSHAPE process(function) is the most suitable process for this task. Five control
points have been selected along the edge of the loaded end, as shown in Figure 11.

The command file for the iterative improvement process function is:
reshape(improvement)
nset(srow)=1
control
steps(n=30,s=2)
responses()
stress(var=vmmax, target=-50%,avgw=90%)=elem(all)
volume(bound=ceiling,tol=10%)=elem(all)
process(function)
domain(xy)=element(all)
locked(x)=node(399,779)
locked=node(400,401)
fcontrol=nodes(381,391,399,762,779)
end

The resulting shape is shown in Figure 12, together with the original circular shape.
2
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Figure 12: Original and new shape of the pipe

The maximum von Mises stress of 400 MPa was reduced to 360 MPa.
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6.2 Example 2 — Stress reduction in a cylinder with a hole

Figure 16 shows a section of a cylinder with a hole in the middle, modeled using symmetry
and loaded in the longitudinal (z) direction. The hole in the cylinder is experiencing high
stress. The objective is to modify the shape of the hole so that the maximum stress is
reduced. The hole must remain on the cylindrical surface. Also, the hole must not go inside
its original radius, or outside the rectangle into which the hole is inscribed.

The constraint for the hole to remain on the surface of the cylinder can be satisfied, only if
the shape of the hole is forced to change in y and z coordinates interpreted in a cylindrical

| co-ordinate system (shown in Figure 16). In this system, y represents the change in the
circumferential direction (with no change in the radial and axial directions).
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Figure 16: Cylinder with hole modeled using symmetry

Figure 17 shows the system again, together with a second cylindrical system, needed to
keep the hole in the limits as prescribed above. This second system has the radial direction
pointing along the radius of the hole.

Figure 17: Second cylindrical coordinate system and selected domain

Figure 17 also shows the domain used for the shape change. It makes no sense to change
the whole model, because the only region up to a certain distance from the hole will reduce
the stress, hence it would be a waste of CPU time to change the whole model.

The maximum value of Mises stress is 661 MPa and appears at the expected location at the
hole edge.

The following ReSHAPE command file is used for the stress reduction:
reshape(improvement)

nset(fixed)=1thru4

eset(hole)=5

eset(active)=6

nset(nhole)=7
control

steps(n=200,s=2,m=0.95)

responses()

stress(var=vmmax, target=-50%,avgw=95%)=set(hole)

13



process(function)
domain(yz,cid=1)=set(active)
passive(internal)=set(active)
locked=set(fixed)
fcontrol (wrt=yz, rot=y)=nodes(9,15)
fparam(bound)=4

side conditions
alimits(x1=29.9, cid=2)=set(nhole)
alimits(xu=30.01,zu=30.01)=set(nhole)

end

Notice the increased value of the fparameter(boundary)from the default of 1.0 to 4.0.
The use of the default value shows too much mesh change inside the model and not along
the hole. This is caused by the internal influence function being “too week”, i.e. decreasing
too fast from the maximum value at the boundary. The combined influence functions (adding
user defined to the internal ones) drop suddenly too sharply to zero at the boundary. The
increased value results into less sudden change, and, as the consequence, into a better

mesh.

The resulting shape of the hole is shown in Figure 18, together with contours of Mises
stresses, the maximum of which was reduced from 660 MPa to 335 MPa.
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Figure 18: Contour of von Mises stress for the improved shape

Figure 19 shows the axial view of the cylinder after the shape change. It is evident that the
cylindrical shape was not affected by the shape change of the hole.

Figure 19: Axial view of the improved cylinder
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7. CONCLUSION

With the introduction of the undergraduate Design Improvement course (started in year
2000), as a follow up of the introductory finite-element course, engineering students are
educated in modern methods of design improvement. In such a way, the industry will be
continuously provided with structural engineers who are at the fore-front of the application of
finite-element methods and so will be thus be capable of contributing more effectively to
designing better products.
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