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ABSTRACT – 
This paper is focused on the integration of multi-objective design environment code 

modeFRONTIER with ANSA mesh morphing and µetaPOST CAE visualization software. 
In this environment, the users can easily define a workflow linking together different modules 
that represent the ‘bricks’ of the optimisation problem: design variables, model and mesh 
files, CAE nodes, specified outputs, as well as optimisation objectives and constraints.  
In particular, several CAE tools can be easily integrated in the process through the available 

direct interface nodes, including ANSA and µetaPOST, allowing the automatic update of 
morphing parameters and extraction of specified results (related to optimization objectives). 
This paper will also illustrate, through some applications of ANSA combined with FEM and 
CFD solvers, how the Grid capability of modeFRONTIER allows to distribute the simulations 
on a network of available machines, fully exploiting the available computing resources. 
Several multi-objective optimization algorithms are available in modeFRONTIER, and in 
particular, for the applications of this paper it will be illustrated the efficiency of Game Theory 
and of fast algorithm FMOGAII (based on Genetic Algorithm and Response Surfaces), to 
obtain the optimal results with the lowest number of design simulations.  
In addition, dedicated tools, including Statistical Analysis and Multi-Variate Analysis, can be 
used in order to help the users analyse the influence of the variables on the objectives,  
improve the efficiency of the optimisation strategy and select the definitive solution. 
 
TECHNICAL PAPER – 
 
1. INTRODUCTION 
 
Multi-objective optimisation in automatic and distributed environment, that allows direct 
communication between multi-disciplinary simulation software, is becoming continuously a 
key factor in design process.   
Traditional design approach (‘trial and error’) usually requires many attempts to the 
designers, which every time need to modify their numerical models by hand and run several 
solvers, especially when it is difficult to know a priori in which direction of the multi-
dimensional variables space to move in order to find the best solutions.  
Conversely, the multi-objective design environment modeFRONTIER [1] allows to integrate 
different computational software (any commercial or in-house code) into a common design 
environment, thus allowing the automatic run of a series of computations proposed by a 
selected optimization algorithm, until the specified objectives are satisfied.  
In this modular environment, each component of the optimisation process, including input 
variables, input files, scripts or direct interfaces to run any software, output files, output 
variables and objectives, is defined as a node to be connected to the other components.  

In this scenario, the ANSA and µetaPOST direct interfaces available in modeFRONTIER play 
an important role for designers which deal with parametric mesh morphing through ANSA 

and extraction of results from any CAE model by µetaPOST, since all the morphing 
parameters and responses defined in the model are automatically recognised by the 
interfaces, and therefore the model can be easily integrated in the optimisation loop.  
In this way, the complete logic flow from parameterisation to performance evaluation is 
defined by the user, that can select among several available optimisation algorithms, 
accordingly to the objectives defined, including Genetic Algorithms [2], Evolutionary 
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Algorithms, Game Strategies [3], Gradient-based Methodologies, Response Surfaces (to 
speed up the convergence of optimisation, approximating the response of the system by the 
use of the available Meta-Models), and Robust Design Optimisation (optimisation under 
uncertainties on input parameters). 
Statistical and Multi-Variate Analysis tools [10], some of them being illustrated in this paper, 
can be applied to find important information about the influence of the parameters in the 
system, in order to face up problems characterised by a large number of parameters and 
large computational efforts with the highest efficiency. 
Two industrial application examples are presented in this paper, one related to a structural 
optimisation (the harmonic analysis optimization of an engine crankshaft), and one related to 
a CFD optimisation problem (yacht sail flying shape design). 
 
2. FIRST APPLICATION: CFD OPTIMIZATION OF YACHT SAIL FLYING SHAPE 
 
Problem description and ANSA model definition 
 
The first application case focuses on the design of a flying shape for a yacht sail. In sail 
design terminology, the design shape is the undeformed shape of the sail, whereas the flying 
shape is the deformed one. In this regard, a common task of sailing yacht designers is to 
optimise flying shape performance using CFD simulation, and finally find the corresponding 
design shape through reverse-engineering process [6].  
The primary objective in designing the flying shape is to maximize the driving force; in 
addition, in order to provide sufficient transversal stability, another objective needs to be 
introduced, which is to minimize the (transversal) heeling moment.  
In our application, the baseline geometry of the deformed flying shape is obtained from an 
existing sail model of an high-performance 65-feet racing yacht. The mesh is made up by 2,5 
million polyhedral elements, mainly composed of tetrahedral cells for the volume surrounding 
the main and Gennaker sail, while variable size hexas in the main volume are connected 
through pyramids and tetras with the surface mesh over the sails.  
Morphing boxes are created in ANSA v13.1.1 and modelled in order to contain the whole 
Gennaker geometry inside. In this regard, four split layers are inserted in order to 
parameterise the Gennaker sections at 0%, 25%, 50% and 75% of total height (see Figure 1, 
left). 
 

 
 
Figure 1 - Sail flying shape morphing box in ANSA (left) and morphing parameters (right) 
 
Accordingly, draft, camber and twist angle at each section (fig.1 right) are defined as 
morphing parameters in ANSA model to generate new mesh shapes as variation of the 
parent mesh.  
ANSYS CFX solver is used for CFD simulation. Boat speed is considered equal to 6.23m/s 
and wind speed equal to 6.23m/s, with a wind angle of -139°; Reynolds is equal to 3E6. 

twist 

camber 

draft 
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Workflow creation in modeFRONTIER and usage of ANSA direct interface 
 
The next step needed to setup the optimization process is to define the process workflow in 
modeFRONTIER (fig.2), which looks as a modular network connecting the different “bricks” 
of the process design.  
All the input parameters (illustrated in previous section) are defined by dedicated nodes, 
which specify their range of variation, and they are all linked to the first application node, 
ANSA direct interface. The execution of this node automatically updates the values of the 
design variable for each different configuration proposed by the optimization algorithm, and 
the updated mesh is linked by a transfer node to the following application, in this case the 
node to execute the CFX analysis. The latter one receives in input the session files that records 
all the operations needed to setup the CFD model, perform the simulation, extract the results, and 
gives as output a text file node (Output_forces), from which for each design the two forces 
needed for the evaluation of the objectives are extracted by a relative parsing rule. 
The two objectives are: 1. Maximize driving force (absolute value of Fx) and 2. Minimize heeling 
moment (Fz). The workflow also includes a constraint for the maximum surface area allowed.  
 

 
Figure 2 - modeFRONTIER workflow for sail optimization 
 
About ANSA direct interface (fig.3), the user has just to indicate the ANSA model file name, 
the ANSA Design Variable File as defined in the Optimization task (DV file), and the name of 
the output file to be saved by the ANSA model (in our case, export for ANSYS CFX). At that 
point, the morphing variables already existing in the ANSA model are automatically 
introspected by the node, and it is possible to link each one of them to a design variable 
defined in modeFRONTIER workflow. 
In this way, the integration of ANSA model in modeFRONTIER is completed: for each design 
proposed by the selected optimization strategy, the ANSA model will be automatically 
updated by modeFRONTIER, which will transfer the model output file to the next application 
(CFX simulation), that will be automatically executed and will give as result the needed 
output variables, repeating the loop until the optimization objectives are satisfied. 
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Figure 3 - modeFRONTIER direct interface for ANSA 
 
Usage of modeFRONTIER GRID for distributed remote applications 
 
From the Run options of modeFRONTIER, it is possible to activate the Grid tool [7]. 

 
Figure 4 - Grid network launched by modeFRONTIER  
 
If modeFRONTIER is launched on a server machine, it is possible to execute some 
application nodes (including the SH node that launches CFX simulation) on a set of specified 
remote machines available in the network (fig.4). 
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Jobs are therefore assigned by the system to different grid nodes according to the load 
balancing policy, excluding nodes that are disabled or can't execute jobs, and therefore fully 
exploiting the available computational resources of the local network. 
As a requirement, it is needed to mount a common directory visible from all the nodes of the 
Grid (as a “Network drive” in Windows OS), and then the agent should be configured via Grid 
Manager on each machine that will enter in the Grid. As soon as the Grid System is activated 
on each machine, the optimization can be launched by modeFRONTIER.  
For the application presented in this paper, four double-Cpu Linux machines had been used 
in the Grid, allowing to complete in 4 hours (the average time needed to complete one CFD 
simulation on each double-cpu machine) 4 simultaneous different CFD simulations relative to  
as many different model configurations proposed by the optimization scheduler. 
At this point, we are ready to launch the optimization process, whose strategy will be 
described in the next two sections. 
 
Preliminary Design Exploration using DOE and results interpretation: Clustering Analysis 
 
As a first step for the selected optimization strategy, a preliminary exploration of the design 
space is performed using Uniform Latin Hypercube [8] DOE (Design Of Experiments). Using 
this method, 100 points are created and distributed in the design space according to a 
uniform distribution applied to each of the input variables defining the optimization problem. 
The Uniform Latin Hypercube algorithm allows a regular equally-spaced sampling throughout 
the design space to attain the most of information out of the points analyzed with the 
minimum number of design evaluations.   
The performance of this DOE algorithm can be measured by the Pearson correlation 
coefficient value calculated for each pair of design variables. In fact, correlation coefficient, 
which ranges from -1 (inverse linear relationship) to +1 (direct linear relationship), represents 
a measure of linear dependency between a couple of variables [9]. Correlation index almost 
approaches zero for each couple of variables of our problem (as resulting from the 
Correlation matrix available in modeFRONTIER Design Space), thus we can conclude that 
the input variables are uniformly distributed throughout the design space, resulting in a good 
quality sampling of the design space. 

 
Figure 5 - Scatter chart of the design objectives: clusters are highlighted in the design space 
 
The results of the DOE configurations for the sail model were analysed using a Hierarchical 
Clustering analysis [10] which allows to identify different groups of design solutions, by 
considering each feature related to the shape and performance of the flying shape sail. 
There are many clustering methods available in modeFRONTIER, and Hierarchical 
Clustering analysis with Ward approach was used in this study: basically, the data are 



4
th

 ANSA & µETA International Conference 

   

divided in K partitions in such a way that the Euclidean distance between each design and 
his respective cluster centroid  is less than the distances to any other centroid. 
Figure 5 shows the effect of the clustering analysis applied to the dataset of design solutions 
evaluated using the Latin Hypercube Sampling DOE (Fx represent the driving force, whose 
absolute value is to be maximised, and Fz is the force component responsible of the heeling 
moment, to be minimised): 10 clusters of different solutions are found among the 100 design 
configurations available. In other words, 10 different groups of candidate solutions with 
similar characteristics in terms of shape parameters and output performance are found.  
 

 
 

Figure 6 - Parallel coordinates chart showing the optimal cluster 
 

Consequently, using a graphical tool like the Parallel coordinates chart to display in each 
column the numerical values of input and output variables for each cluster considered, it is 
possible to find out and screen the optimal candidate solution. In this regard, Figure 6 shows 
the range of input and output values corresponding to the optimal solutions which belong to 
the cluster labelled as ‘CLUSTER_3’ and depicted in yellow in the chart (the width of the 
band is proportional to cluster variance). It can be easily pointed out that in order to minimize 
Fx and Fz (filtered in the chart) the twist angle for sections at 75% of total height (twist4 
variable) must be reduced significantly, and it seems to be the variable with highest 
influence. Similar considerations can be made for the other design variables considered. 
The range bounds of all the input variables can therefore be reduced from the original values 
up to the extremes of the selected optimal cluster, and the optimization algorithm to be 
selected in the next step can therefore be applied in the reduced optimal variable space, 
improving the efficiency and the rapidity of the optimization process.  
 
Optimization starting from the optimal cluster: FMOGAII algorithm 
 
After the reduction of the variable space in the region defined by the optimal cluster as 
described in previous section,  a multi-objective optimization algorithm is applied. 
In modeFRONTIER several optimization algorithms are available, including Genetic 
Algorithms, Evolutionary Strategy, Game Theory, Downhill Simplex, Simulated Annealing, 
Particle Swarm, Gradient Based algorithms and FMOGAII. 
The latter one is based on the integration of robust algorithms like MOGAII (Multi-Objective 
Genetic Algorithm) and the efficiency of the Response Surface Methodologies (fig.7). 
Starting from a set of design data (DOE), in our case the designs belonging to the optimal 
cluster, different Response Surface Meta-Models (Radial Basis Function, Kriging, Neural 
Network, SVD, etc..) can be trained, and they can be used to automatically extrapolate the 
response of the system in function of the design variables. In this way, a full virtual 
optimization step can be performed (virtual in the sense that CFD and other application 
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analysis are not evocated, but results are extrapolated directly from the RSM mathematical 
Meta-Models), including a local refinement DOE phase around the best solutions, while the 
best solutions so far obtained (Pareto frontier) can be validated using real simulations (the 
chain of the workflow), updating this way the Response Surface Meta-Models with the new 
real designs evaluated in following steps, until a convergence is reached. 

Figure 7 - Flow-chart of FMOGAII algorithm 
 
Applying this methodology, it was possible to compute only further 50 Real design 
simulations, improving the design solutions as represented in fig.8. 
The new computed points (by FMOGAII) are represented in black in the performance space. 
The concentration of new black points in optimal zone of performance space further confirms 
the efficiency of combination of the filtering performed in first step, and of Fast algorithm 
employed in the second step. 

 
Figure 8 - FMOGAII results obtained in the optimal cluster 
 

Convergence  
reached? 

Optimal Design 
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Analysis of the results obtained: SOM Analysis 
 
To better illustrate the influence of input variables on the design objectives for the optimal 
solutions found, and help the designer in the choice of the definitive design, a SOM (Self 
Organizing Map) analysis [11] is performed. 
SOM is a non-linear projection of Multivariate data (large number of variables) on a two-
dimensional regular grid, that allows to mine multiple local correlations and hidden structures 
in complex datasets. Each cell unit of the SOM can display by a colour scale the values of 
each variable (in a different SOM map), corresponding to the same local region or cluster of 
the variable space, thus enabling the user to find out local correlation values between input 
and output variables. In other words, SOM tool enables the designer to see in a multi-
dimensional chart how to modify values of input variables to reach the different target values, 
here for both Fx and Fz forces. 
A SOM is created on the samples belonging to the optimal cluster including the latest 
evaluated 50 points obtained from the second phase optimization. In this way, two groups of 
solutions having minimum value (blue scale) of Fx and Fz respectively are identified, as 
showed in Figure 9. Two groups of SOM units are in fact indicated on the top and bottom 
right side of the Fx and Fz maps respectively, identifying two precise areas of the design 
space and therefore two precise groups or clusters of data (two sail solutions belonging to 
the two different groups are also represented in fig.9). It can be pointed out that minimising 
Fx and Fz are conflicting objectives, since the two optimal regions are differently located, 
thus a trade-off solution must be found by the sail designer according to the sail specific 
requirements.  
 

 
Figure 9 - SOM component maps for objectives illustrating trade-off 
 
Therefore, if we visualize the SOM units corresponding to the best values of the two design 
objectives on the maps relative to the input variables, we may determine and compare the 
values of the input variables which can minimise Fx and Fz respectively. 
Using the SOM tool, the designer can in fact visualize and estimate the variation of the input 
variables when moving from the optimal solution for driving force Fx (top right side of the 
maps) to the best solution for heeling moment Fz (bottom right side of the maps).  
In this regard, Figure 10 shows how each input variable changes when moving from best 
solution for Fx to best solution for Fz, both using SOM maps (on top) and Cluster Parallel 
Coordinates Chart (on bottom) representation. 
We may find for instance that the input variables having more effect on the two design 
objectives (having highest variation when moving from best Fx to best Fz solution) are the 4 
camber parameters, in particular the ones relative to section at 25% and 75% of total height. 
Consequently, high camber values optimize the driving force, whereas low camber values 
minimise the heeling moment. 
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Figure 10 - SOM chart: variation of input variables from best solution for Fx to best for Fz 
 

In both the optimal solutions proposed of fig.9, the performance of the baseline sail model 
are improved for both Fx and Fz as showed in Figure 11, which reports a comparison 
between the different models considered.  
In a similar fashion, each sail designer can arbitrarily select the final flying shape of the sail 
according to his preferences and requirements. 
 

 Fx [kN] Fz [kN] 

Baseline -5.47 6.62 

Best Driving Force -5.76   (+5.3%) 6.39   (-3.5%) 

Best Heeling Moment -5.68   (+3.8%) 6.18   (-6.6%) 

 
Figure 11 - Performance results summary: baseline and optimal solutions 
 
 
3. SECOND APPLICATION: HARMONIC OPTIMIZATION OF CRANKSHAFT 
 
Problem description  
 
In this second application, the purpose is to optimize the web shape of a 4-stroke, 4 cylinders 
engine crankshaft, whose main data [12] are: engine power=50KW@2000rpm, crank 
radius=32mm, rod length=150mm and piston diameter=85mm. The forces scheme acting on 
the rod (for design crank speed of 2000rpm) can be visualised in fig.12, from which it has 
been decided to skip the effects of radial (normal) force. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 - Forcing loads on the connecting rod of the crankshaft 
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In particular, the web shape of the crankshaft is to parameterized (see next section), in order 
to minimize the maximum stress deriving from an harmonic analysis [13], minimizing at the 
same time the mass of the crankshaft, and keeping a constraint on the rotation balance (i.e. 
on the reaction forces computed from static analysis under centrifugal load). 
First of all, a modal analysis of the unconstrained crankshaft is performed, in order to find the 
first natural vibration modes: the analysis is made in Abaqus, with the model defined without 
constraints. 
Second, the forcing loads applied with different phases on each crank-pin (derived from 
fig.12 and represented schematically for each pin in fig.13 left) have to be transformed by 
FFT (Fast Fourier Transform) in amplitude vs frequencies domain. In fact, each signal in the 
time domain can be decomposed in a sum of infinite harmonic components, each one of 
them characterized by a frequency, an amplitude and a phase (fig.13 right reports amplitude 
vs frequency transform of the load signal). 
 

                       
 

Figure 13 – FFT transform (right) of pin forcing loads (left) 

 
Also the phase of the forcing loads can be obtained by the FFT, but in this case, since the 
forces on the 4 pins are equally phased, the phases of the harmonic components just have 

differences of π/2 following the ignition order of the pistons (fig.14 left, vectors indicate the 
different phase of the harmonic components on the 4 pins). 

                                                                      
Figure 14 - Phase of the load harmonic components on the 4 pins (left) and reaction load on 
bearings (right) 

 

We still need to define the harmonic components of the reaction loads on the bearings. As 
approximation, we can consider that each pin load is balanced equally by the two closest 
bearings, therefore each bearing is loaded by the sum of two half pin loads, except of the first 
and last that present only one component (fig.14 right). 
In analogy, also the harmonic components of the reaction bearing loads are obtained by the 
sum of the relative harmonic components of pin forcing loads, and therefore all the loads on 
the crankshaft can be now expressed in terms of harmonic components, including phase and 
amplitude for each harmonic frequency. 
Since only the harmonic components corresponding to the natural frequencies of a system 
can produce a large amplification effect of deformations/stresses (resonance), the harmonic 
analysis will be performed on the crankshaft applying only the harmonic components 
corresponding to the first natural frequency. 
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All the forcing loads and reactions are therefore applied on the pins and bearings specifying 
amplitude and phase corresponding to the selected frequency, and as result the stress field 
may be obtained using Abaqus steady state dynamic solver. An empirical structural damping 
coefficient equal to 3 is considered. 
The harmonic analysis can be repeated also for the second natural frequency, but since the 
stresses found are less than 1/10th of the first frequency ones, their effect may be neglected. 
 

Model morphing and workflow definition using µetaPOST 
 
The mesh of the crankshaft model is completely defined in ANSA (over 800,000 mixed 
elements), and morphing boxes are created in order to control the shape of the crankshaft 
webs. For this purpose, six blocks are created around one half of the web (fig.15 left) and are 
fit to the geometry. The control points are defined as reported in fig.15 left (5 parameters) 
and in figure 15 right (angle parameter), allowing to modify width, height and angle of the 
different geometrical parts composing the web.  
 

       
 
Figure 15 - Morphing boxes around web with relative control points (left) and links around 
crankshaft (right) 
 
Note that the nodes around the base of pins and cranks are defined as nested elements with 
none DOF (blue in the picture), and links are defined to extend by symmetry the morphing 
boxes to the remaining parts of the crankshaft (fig.15 right). All the boundary conditions for 
Abaqus simulations are defined in ANSA model as described in previous section. 
At this point, the ANSA model can be integrated in modeFRONTIER workflow (fig.16) using 
the direct ANSA interface as described in chapter 2. Besides the input variables defined 
above, also material or other model properties can be parameterized: in our case, Young 
modulus is considered.  
The output files exported from ANSA node (.inp file) are linked this time to three different SH 
shell nodes, each one of them launching in batch mode a different Abaqus analysis. The first 
is a modal analysis, from which the first natural frequency obtained is used to extrapolate by 
the calculator node available in the workflow (interp function) the corresponding amplitude of 
the forcing loads from the relative file (fig.13 right). The second analysis is therefore an 
harmonic analysis performed on the same Abaqus .inp file, after having updated it with the 
forcing amplitudes obtained by the procedure just described. Finally, a static analysis is 
performed on the constrained crankshaft under centrifugal force, as explained in previous 
section, to evaluate the balance of the crankshaft. 
In fig.16 it is illustrated then how the output data relative to harmonic and static analysis 
(respectively maximum stress amplitude and maximum reaction force) are extracted from the 

.odb output files produced by Abaqus, through the µetaPOST direct interface. From the 
interface it is just necessary to specify the name of the output file (in this case .odb) and the 

Up_angle 
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name of the session file created in µetaPOST to define any response parameter. The latter 
can be extracted from the available list, as represented in fig.16. 
 

 
 

Figure 16 - modeFRONTIER workflow and µetaPOST interface 
 

At that point, the workflow can be completed just by defining the objective nodes relative to 
mass minimization (extracted from ANSA deck command), to the harmonic analysis 
maximum stress minimization, and a constraint on the reaction forces on the pins, to be less 
than the original configuration values. 
 
Optimization setup using MOGT (Game Theory) algorithm 
 
The algorithm selected for this application is MOGT (Multi Objective Game Theory) [14]. This 
class of algorithms is particular efficient to find by a reduced number of simulations good 
compromise solutions between contrasting objectives (like our case), improving efficiently a 
baseline configuration. 
The Competitive Game algorithm implemented in modeFRONTIER follows different steps: 
first, the variable space is initially decomposed randomly, and then each player, starting from 
a common original design, launches a mono-objective optimisation algorithm (Downhill 
Simplex [5]), to improve the objective assigned to it.  
After a certain number of Simplex iterations, each player finds the best configuration (and set 
of variables) for its objective, and then the search continues with a new step, for which each 
player starts a new Simplex sharing the optimal variables found by the other players. 
The problem of the variables space decomposition is very important [16], since it influences 
the results of the equilibrium point and thus the optimisation results. For this reason, an 
adaptive strategy has been applied in the MOGT algorithm, using statistical analysis and in 
particular the t-Student coefficient to decide, at the end of each player step, if a variable is 
statistically significant for the player to which it is assigned or not, and, in the latter case, i.e. 
if the significance percentage is lower than an assigned threshold, the variable is given to 
another player in the following step.  
As a convergence, not only a (Nash) equilibrium point [15] may be found, but also the 
optimal variable decomposition between the players; in addition, several not-dominated 
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points can be found by the algorithm during its search, allowing to finally find a set of 
compromise solutions between the contrasting objectives (Pareto frontier), with a small 
global number of simulations required, if compared to any other heuristic algorithm like 
Genetic Algorithm or Evolutionary Strategies. 
 
Optimization results and Response Surfaces visualization 
 
The application of MOGT to the problem defined in this paper allowed to find the results 
reported in fig.17, with an overall number of required simulation designs less than 100. 

 
Figure 17 - Optimization results: mass and maximum stress magnitude to be minimized, 
reaction (colour) constrained (less than 164N)  
 
In ordinates and abscissa of the chart in fig.17 the two objectives to be minimised are 
reported (respectively, maximum stress of harmonic analysis and crankshaft mass), and 
each design proposed during the optimization is represented by a point; the colour scale 
indicates the value of the constraint, which is equal to the static analysis reaction force, to be 
less than the baseline value of 164N. 
Among the Pareto frontier (set of not dominated designs), one design (ID 94) has been 
arbitrary selected (see also fig.18). All the objectives have been significantly improved (16% 
reduction of maximum stress amplitude, 2% reduction of mass, and reaction forces on 
bearings reduced of 15%), confirming the efficiency of the algorithm applied. In particular, 

from the pictures taken from µetaPOST (fig.18) relatively to the harmonic analysis results, 
the reduction of maximum stress in the region of pin-web intersection is very clear. 
In addition, in order to introduce another modeFRONTIER useful post-processing tool, fig.19 
reports an example of RSM (Response Surface Methodology) 3D charts. All the designs data 
available from the optimization are used to train a Response Surface (several ones are 
available, see chapter 2: in this case, Radial Basis Function are used), which is a 
mathematical Meta-Model that can be used to extrapolate, for given input variable values, 
the output responses. 
In fig.19, the response relative to maximum stress amplitude is represented in function of two 
selected variables, bottom_dx and central_dz, appearing in abscissa and ordinate of the 
charts, and it is clear how the stress raises significantly if central_dx parameter becomes 
lower (in fact, optimal web configuration middle part is “shifted” towards the top); at the same 
time, a panel on the right is available, allowing the user to change manually the values of all 
the other input parameters, having an immediate update of the responses, and an immediate 
preview about the responses variation. 
 

baseline 

optimized 
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Figure 18 - Comparison between baseline (left) and optimised configuration (right): ANSA 

model and µetaPOST results 
 

 

Figure 19 - Response Surface 3D chart in modeFRONTIER: maximum stress response vs 
morphing input parameters 

 
Finally, fig.20 reports an example of another statistical tool, the Effect chart: for each output 
variable (here maximum stress) the effects of the single input variables are reported, 
including magnitude and sign: it is clear that the variable having most (inverse) effect is 
central_dz, as confirmed by the RSM of fig.19, then bottom_dx is the second variable by 

Original 
• Mass:         29.5 kg 

• Stress:       218 MPa 

• Reaction:  164 N 

Optimised 
• Mass:         28.9 kg 

• Stress:       184 MPa 

• Reaction:  138 N 
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importance with a direct effect (lower values give lower stress results), and then come all the 
other variables. 
 

 
 

Figure 20 - Effect chart: stress objectives vs input parameters 
 
 
4. CONCLUSIONS 
 

This paper shows how it is possible to integrate ANSA and µetaPOST software in the multi-
objective optimization environment modeFRONTIER, through the dedicated direct interfaces, 
and how to set up and run a multi-objective optimization for any kind of application. 
The efficiency of the procedure is proved by the results obtained in two industrial cases, a 
CFD application consisting in the maximization of driving force and minimization of heeling 
moment of a yachting sail, and a structural optimization of an engine crankshaft. 
Two different kinds of strategies were adopted: in the first case, characterized by high 
computational-demanding simulations, a strategy based on statistical analysis (Clustering) 
and Fast Algorithm based on Response Surfaces (FMOGAII) was applied, in order to reduce 
the number of necessary simulations to reach the target. SOM (Self Organizing Maps) tool 
was therefore used to better visualize the multi-dimensional variable space, allowing to 
identify the variables from which the two objectives depend most, and help the designer in 
the selection of the definitive solution. 
In the second case, a fast and efficient algorithm based on Game Theory (MOGT) was 
applied, and some useful post-processing tools have been illustrated to better analyze the 
results. 
In both cases, the optimized solutions had significantly improved the baseline configurations, 
and have been obtained by a reduced overall number of simulation designs. 
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