6" BETA CAE International Conference

AUTOMATIC GENERATION OF MULTIBODY
SIMULATIONS IN ANSA BY USAGE OF GRAPH-BASED
DESIGN LANGUAGES

1C. Diez’
'Adam Opel AG, germany

KEYWORDS -
Multibody Simulation, Kinetics, Graph, Design Language

ABSTRACT —

Automation is nowadays a crucial part in engineering since automation of manual processes
increases the speed by a very high factor and thus saves a lot of ressources. The challenge
lies in the automation of creative high level tasks in which the structure of the problem itself is
changing strongly and thus knowledge modelling is necessary.

One of these difficult tasks is the design of engineering structures. This task can be
automated by graph-based knowledge libraries in which an engineer can lay down his
knowledge to solve a task (6).

In the progress of construction many questions arise which can be answered by either tests
or simulation. In general one uses a detailed geometry as basis and builds up a simulation
model from it. In this process the engineer uses his existing knowledge to determine
boundary conditions etc. This task can be automated by laying down the knowledge about
this process into a design language which can cope with changing architectures.

In overall it is more appropriate to use a graph as meta-model from which other models like
geometry and multibody simulation can be derived by a mere model-to-text transformation.
Geometry is not an appropriate central data model since it is lacking a lot of information.
This paper concentrates on the automatic generation of multibody simulations by usage of
graph-based design languages. Therefore a previous design language creates a graph with
geometry information which will be extended to multibody physics (3). As a result this graph
can be transformed to either ANSA (1) or ADAMS (7) automatically. In the end the design
language itself returns result data for further analysis and possible decisions.

TECHNICAL PAPER -
1. INTRODUCTION
Graphs can be used as an abstract way of knowledge representation. For example the

following multibody model in fig. 1 of a car roof kinematic can be shown as a chain of joints
and bodys where each node contains further information about the object-class it represents.

® Joint

® Body

Figure 1 — Multibody model of a car roof (left) and it's graph representation (right).




6" BETA CAE International Conference

Graph-based design languages have proven to be very powerful in the automization of
engeering tasks (4). In a design language there are two major elements: a class diagram and
a production system. In this paper the Design Compiler 43 (5) was used not only to build up
the class diagram and the production system but also for execution of the production system
and the export of the graph to external programs like ANSA.

PlotPlugin
Load Solution Data
Toack Sohtons
eg. CATIA
Export
- v Multibody

Class Production
[ Diagram System [ D1t H KGRl J_
Knowledge Basis: Rules: Execution and Graph ROUting

database

Associations (has) Graphical Rules Re|labl|lty

Inheritance (is) Programming Rules
Properties Export )
Equations Equations

eg. Mathematica

Figure 2 — Modeling process for design languages.

Class Diagrams

In a class diagram an engineer can lay down his knowledge structure as classes. These
classes can be used later in a production system to implement the solution strategy. The
classes can have properties and associations as well as inheritance inbetween. It also is
possible to define equations between the classes themselves. The class diagram does not
represent the model itself. It is solely some kind of data structure for the instances which will
be created later. As already mentioned the most important relationship indicators are
inheritance and association which can be spoken as ’is’ and ‘have’. Inheritance transfers all
properties of a class on the inheriting one, including the classifier.

For example in a class diagram for a car one can define that a car is a vehicle and has four
wheels. The diagram in Fig. 3 has no geometrical representation yet but as an engineer one
is able to talk about for example wheels or their properties without specifying the geometry.

Hvehicle
EHwheel

= length : mm

i wheel | [4]

Ecar

Figure 3 — Example of a class diagram for cars. A Car is a Vehicle thus also has a length.
Additionally it has four Wheels.

Production Systems

The production system can be executed to build up the graph. Therefore one defines a build
sequence of rules. This rules can be graphical or string-based. There also are more elements
like decision nodes to choose different paths or define quality gates. The graphical rules work
with a if-then scheme. If there is a given pattern in the graph then it will be modified like
specified on the then-side. Most of the time one simply extends or replaces parts of the
graph. Additionally there is the possibility to use external software by transforming the graph
to other software systems to answer questions by simulation.




6" BETA CAE International Conference

acka LHS) ack a RHS)

= :Wheel

z)
£
it
R
3
]

Figure 4 — Example of a production system (left) and a graphical rule (right). The graphical
rule just adds an instance of the class wheel to any graph-node of the class-type ‘Car’ in the
database.

2. CLASS DIAGRAM FOR MULTIBODY DYNAMICS

In order to generate the multibody simulation automatically one has to provide a class
diagram for multibody simulation. When starting the transformation process an interface will
run through the graph and check the instances for the multibody classes which then will be
transformed into a text input for a software system. In the case of ANSA the design compiler
creates a python script and launches the program with it. During the transformation many
checks take place to ensure a mostly consistent multibody model. One has to emphasize the
comfort that it is possible to implement semantic checks which ensure not only clean model
data but also that the user makes less modelling mistakes. ????

The class diagram for multibody dynamics is split into several parts.

> Model-Creation
> Joints

> Loads

> Contacts

> Measurements

Each topic itself tries to be as small as possible since in knowledge engineering minimality is
a hint for optimality of understanding.

Model Creation

The model creation part is about body creation which divides into body positioning and
body properties.

First one has to create a body and give it a position. The positioning can be taken from
already existing geometry, it can be done locally to other bodys or globally. One can define
positioning equations which can be solved by the solution path generator before the
geometry export.

After the positioning follows the assignment of rigid body properties. Therefore the user can
assign a geometry to the body (stl,igs,...). If one wants to calculate the rigid body properties
by density, one has to define geometry since otherwise the volume integration can not be
performed.

At last one must assign inertia to the body. This can be done by either assigning mass and
inertia explicitly to the model or using just a density which allows the calcuation of the rigid
body properties if there is a geometry. Additionally there also might be markers on the rigid
body for further positioning, contraints or boundary conditions.

Joints

Joints are used to couple rigid bodies. This can be done two type of joints: KinematicJoints
and DynamicJoints. KinematicJoints are kinematic constraints which couple the degress of
freedom in a specific location. DynamicJoints are softer and couple bodys with a classical
spring-damper-equation.




6" BETA CAE International Conference

&l AbstractBody H PositionReference

body2 | bodyl

appliedLocation

1

H 10int

Figure 5 - Any Joint can be defined between two AbstractBodys (Body, Ground). Additionally
one can specify a location for the Joint which may be any PositionReference (Body, Ground
or Marker).

Most software systems provide many different types of joints like revolutes or sphericals. In
this work another approach was used. One can specify a coordinate system (marker) where
the joint shall be created. Then one is able to 'lock’ specific degrees of freedom (DOF) of that
marker. With this approach most of the joint types in commercial tools can be reduced to one
class, the GeneralJoint. It is much easier just locking DOFs than rotating joints into their
proper orientation.

ERevoluteJoint

E constrainX : Boolean = true
= constrainY : Boolean = true

=l constrainZ : Boolean = true E GeneralJoint

=l constrainRotX: Boolean = true

Bl constrainRotY : Boolean = true O constrainX : Boolean = false

" ! O combiJoint || & constrainY :Boolean = false | | EKinematicJoints o E Joint
Sl constrainZ : Boolean = false
ElFixedJoint ] S constrainRotX: Boolean = false | g £

© constrainRotY : Boolean = false

= constrainX : Boolean = true Sl constrainRotZ : Boolean = false

El constrainY : Boolean = true I.]

Sl constrainZ : Boolean = true

= constrainRotX : Boolean = true
© constrainRotY : Boolean = true
= constrainRotZ : Boolean = true

Fidure 6 - Subset of the Joint classes. The GeneralJoint can constrain any DOF of a marker.
A RevolutedJoint for example is a GeneralJoint but constrains 5 DOFs (as standard).

DynamicJoints are applicated rotationally or translationally. Kinematic constraints have an
infinite stiffness which results in a hard couplings. It is more appropriate to use a finite
stiffness and damping. These ’soft’ couplings just correspond to spring-dampers. In the class
diagram one can use either TranslationalSpringDampers or RotationalSpringDampers.

Loads

If one wants to solve the equation of motion for a body, one has to calculate the acceleration
of the body from forces and momentum. These accelerations can be transformed into
displacements by integration in time. Thus a load can be seen as on the one hand dynamic
sources like forces but also on the other hand definition of the kinematics of a body. One
should always keep in mind that by definition of the kinematics of a body, additional forces
and momentum have no effect anymore.

Again in the classes there is a separation between a KinematicLoad and a DynamicLoad.




6t BETA CAE International Conference

H Position Reference

actionEleert
reactipnHement
coordingteSystem

= Load
= Dynamicload
= Kinematid_oad
= PointLoad = FieldLoad

= Displacem entl oad = velocityl oad = AccelerationLoad
=l dx : String = 0 Sl vx ; String = 0 Sl ax : String = 0 U Force E/Momentum H FieldFarce
= dy : String = 0 =l vy : String =0 =l ay: String =0 ) i
=l dz : String = 0 = vz: String =0 ol az: String = 0 S fx:string =0 = mx:String =0 =l accelX: m/s™2 =0
= phi : String = 0 =l omegaX: String =0 = alphaX: String =0 Eify:string =0 Emy: String =0 =l accelY : m/st2 =0
=l theta: String = 0 =l omegaY : String = 0 = alphaY : String = 0 Eifz:string = 0 Eimz:String =0 Sl accel:mfs"2 =0
=l psi: String = 0 =l omegaZ : String = 0 © alphaZ : String = 0

Figure 7 - A load has after Newton an actionElement and a reactionElement. One may not
only define constrans but functions of time as well.

Contacts
It is possible that during a simulation contact between two rigid bodies occurs. In that case it

is necessary to define contact properties between these rigid bodies. This can be done by the
classes for an ImpactContact or a RestitutionContact. Besides the parameters for both
classes, one simply has to draw a link from the instance to the two bodies which might
collide.

El Friction E AbstractBody

= mu_stiction : ONE = 0.3

=l mu_friction: ONE =0.1 body2| bodyl

] [0.1]
friction +
—| Contact | [0.7] = MBSModel
contact
@
= KinematicContact = DynamicContact

=l stiffness : N/mm~*2 = 1E5

= RestitutionContact =/ Im pactContact

1= restitution_coefficient: ONE = 0.1 =l damping : ONE = 10
=l exponent : ONE = 2.2

Figure 8 - A Contact needs two bodys and can have Friction.

Measurements

If one needs results from the simulation there also is the possibility to measure properties.
Therefore again we seperate between the interest in kinematics or dynamics. Whereas
kinematics tries to measure between bodys the dynamic measurements focus on the the
force flow through the rigid body. Sensors can be attached to measurements to trigger
specific events when they reach a specific value.




6t BETA CAE International Conference

3. EXAMPLES FOR PRODUCTION SYSTEMS

The classes of section 2 can be referenced in the production system rules. One can either
set up an example of it’'s own by geometry files or use the classes as extensions in another
design language. First does not use the power of design languages that much but one still
enjoys the help of a semantic check during the model to text transformation. Design
languages show their full power when building up large systems automatically.

Car Roof

As a first example a car roof was taken. This model consists of only a few geometry files
which were put together by a production system. This was simply to show that these classes
do not need to be used in a design language but also can be handy for just assembling an
multibody model from geometry.

The production systems contains of one programming rule which loads every geometry file
as an own rigid body. The other rules are graphical ones and just connect the rigid bodys by
their names.

L]
«javaRule» O

1 «Rules runMBS
mbsM ode| 4
[4] «javaRule»
createRBodysWithGeom
.
th _ 1K «Rule»
Motion_HingeMotor

Figure 9 - The production system of the car roof contains not only rules but also sub-
programs (rh) which themselves contain rules.

[Assi gnConfigurationT oM BS]

In the end of the production system the multibody interface is triggered in rule runMBS. This
transforms the graph to ANSA. The car roof model may be checked and watched manually if
the user does run ANSA with gui. If there is no interest in human interaction then one may
also run ANSA in batch mode.

Figure 10 - Time series of the car roof simulation in ANSA.

Aircraft Landing Gear

This example represents an aircraft landing gear test after regulation CS-25. This regulation
contains law specifications on aircrafts. One of these test cases is the landing of the aircraft.
This test specification was taken to build up a simulation model. The knowledge about
construction of landing gears was assembled and extracted into a design language in (3).
This design language was extended in (4) by multibody physics. The modification in the class
diagram was solely the attachement of a rigid body class to the class which represents
physical parts. It can be spoken as: a part has a rigid body (model). Equations transfer the




6t BETA CAE International Conference

part position onto the rigid body. Additionally the LeftWinglLandingGear (LWLG) also was
extended by the class MBSModel to show that only the LWLG was used in the simulation.

The production system of the wing landing gear was extended by another sub program which
contains the rules for the joints, load case boundary conditions and so on. One very
comfortable feature for the setting up the loadcases is the nonlinear equation solver since
position changes like an inclination of the wheels can be propagated very easy to geometry
and rigid body model at once.

[1] ggavaRules

Model Creation Locae raracionyy) LOAACASE: Retraction  Change Model

1K <Rule» [J] avaRules
MBSM odel ExportCATIA LeftWLG

CleanMBS

h_

[J] «javaRule=

1K «Rule»
FixHydraulics

. readSimulationResults

O dnterfaces 11 «Rule»
/ Pspg SetAlphaliltDroj

Loadcase: Crash Down

[J] «javaRulex
LoadCase CrashDown2T,

Figure 11 - The sub program for the extension to multibody dynamics contains two load
cases: retraction and crash down.

The sub program in figure 11 is seperated into different groups. First the rigid body model is
created by using the parametric CATIA geometry. Thereafter follows the load case of
retraction in which a kinematic movement of retraction is given and the force of hydraulics is
measured to perform this movement. After changes in geometry position the load case of a
landing crash down is set up and calculated. In it the force of the damping cylinder is
measured. Finally all these results are loaded back into the engine for further analysis.

Figure 12 - Time series of the crash down load case. There is a virtual airplane mass on this
landing gear according to the experiment specifications.

J\\W/’M W B

X 2.5

=) {5 N w
uo= N w s

Cylinder Force/Static Force [-]
&

70.50

Time [s]
Figure 13 - Force over time from the simulation in the cylinder. The force curve is normalized
with the static load on the landing gear and shows a peak of 3.5 times.




6" BETA CAE International Conference

3. CONCLUSIONS

Design languages have shown to be quite powerful in automation of engineering design
processes. The creation time of a design language depends heavily on the amount of already
available design languages to solve the task (similar to software engineering). The advantage
lies in the fact that every change in requirements can be propagated automatically thus every
second run is free. As a result this method is recommended for reoccuring tasks. The most
important necessity for shortening the creation process is to provide standard knowledge
libraries for the different engineering domains like multibody physics. The class diagram
explained in this paper can be used in other class diagrams and production systems to
provide multibody modeling capabilities. An interface was written to translate the graph which
contains instances of the multibody classes to an external multibody simulation software. In
the case of ANSA the comfortable python interface ensures a stable translation with many
checks taking place during runtime. These results of the simulation can be loaded back into
the engine for further design decisions.

REFERENCES

(1) ANSA version 12.3.0, BETA CAE Systems S.A., April 2015

(2) A design language for passenger aircraft landing gears, D. Heim, 2014, Diploma
Thesis, Insitute of Aircraft Design, University of Stuttgart.

(3) Creation of an ontology for design languages for automatic generation of multibody
simulations, C. Diez, 2014, Master Thesis, Institute for Statics and Dynamics of
Aerospace Structures, University of Stuttgart.

(4) Design languages for multi-disciplinary architectural synthesis and analysis of
complex systems in the context of an aircraft cabin, S. Rudolph, 2014, CEAS
Conference Toulouse 25.-27. september.

(5) Design Compiler 43, IILS GmbH, Februar 2015.

(6) Generating Simulation Models from UML - A FireSat Example, J. Gross S. Rudolph,
2012, Spring Simulation Multiconference, Orlando Florida.

(7) ADAMS Student Version, MSC Software, 2014.




	(6)Generating Simulation Models from UML - A FireSat Example, J. Gross S. Rudolph,2012, Spring Simulation Multiconference, Orlando Florida.
	(7)ADAMS Student Version, MSC Software, 2014.



