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ABSTRACT - 

The significance of lightweight structures is indisputable. Architectured materials like complex 
lattice structures can nowadays be easily fabricated, due to the evolution of Additive Manufac-
turing (AM) technology. They contribute to reduce weight up to 80%, as well as to cost since less 
material is being used. Being almost as durable as a solid part, lattice structures are being more 
and more often used in biomechanical, automotive and aerospace applications.  

A review of the conventional CAE methods revealed crucial difficulties that led to the conclusion 
that such approaches can be grinding and inappropriate. The purpose of this study is to propose 
an effective and less time-consuming modeling method via material homogenization. 

Two lattice unit cells were investigated: a simple beam lattice cell with diagonal beams and the 
Schwarz’s P cell. The appropriate load cases were run in order to calculate the stiffness matrix 
of the lattice cells and the results were nondimensionalized. The material behavior according to 
the mass fraction of the structure was investigated. Pre- and post-processing were automated 
by means of Python scripts. The same scripts were run to obtain the elastic properties of struc-
tures composed of more unit cells and the results obtained were evaluated. 

As expected, the conventional solid mesh approach gives more accurate results but carries sig-
nificant disadvantages regarding model complexity and solution time. The numerical homoge-
nization method is effective, less time and memory consuming and allows for design freedom. 

TECHNICAL PAPER – 

1. INTRODUCTION 

Lattice structures belong to the category of the so-called “architectured” materials. They are 
composed of a combination of bulk material and empty space to generate a new much lighter 
structure, which has mechanical properties close to those of the original bulk material but less 
weight. They are divided into stochastic and periodic structures. Lattices form a sub - category 
of the latter ones, having a three – dimensional periodicity, [1]. 

A lattice structure is the key to produce parts which are lightweight and have good mechanical 
properties. Modern engineering design focuses on the concept of putting material only where it 
is needed and that is where lattices come in. Recent development in additive manufacturing 
technology make building such complex parts possible, [2].  

Cost reduction due to the use of lightweight structures is significant, as the aerospace and au-
tomotive industry achieve vast fuel savings and lower emissions. The medical industry takes 
advantage of the lattice structures as they allow designers to emulate bio-structures.   
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Implementing conventional CAE tools to accurately analyze lattice structures is time and 
memory consuming. A huge number DOF for the finite element model and a considerable com-
putational effort would be needed for a precise representation of the lattice structure, at the 
scale of the component, [3]. As the number of the individual unit cells increases, the pre – pro-
cessing files become very difficult to manipulate, almost impossible to solve and the results 
require a considerable amount of disk space. That is why there is the need to avoid using volume 
mesh on the initial geometry and use an effective and less time – consuming modeling method 
on large and complex structures. 

2. HOMOGENIZATION  

From a mechanical point of view, the elementary unit cell (often referred as Representative Vol-
ume Element, “RVE”) of a lattice structure can be interpreted at the microscopic scale, as a het-
erogeneous medium. At the macroscopic scale, it can be modelled as an equivalent homogene-
ous anisotropic continuum. When dealing with the analysis and design of lattice structures, a 
good practice is to make use of a homogenization procedure in order to replace, at the macro-
scopic scale, the actual, complex geometry of the RVE by an equivalent homogeneous medium. 
Its mechanical response can then be described by a set of “effective” (or equivalent) material 
properties. Although the bulk material constituting the lattice is isotropic, its macroscopic be-
havior (i.e. after homogenization) can be (in the most general case) completely anisotropic be-
cause its effective elastic properties depend upon the geometrical parameters of the RVE at the 
lower scale, thus being affected by the RVE orientation too, [3]. In this work, orthotropic RVEs 
with cubic symmetry are being examined and the homogenization scheme is based on the re-
action forces calculation. 

The material constitutive equation of an orthotropic and linearly elastic RVE can be written as: 

[�̅�] =  [𝐶][𝜀]̅ (1) 

where [𝜀]̅ is the average strain matrix, [�̅�] is the average stress matrix and [𝐶] is the stiffness 
matrix as shown in Eq. (2) for the orthotropic three - dimensional RVE, [4,5]: 
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(2) 

For the calculation of each constant of the stiffness matrix, certain boundary conditions and 
displacements are imposed on the RVE in order to obtain only one component of the strain 
matrix different from zero. The average stress is computed by taking into account the sum of 
the reaction forces over the equivalent surface of the RVE. Then, the material properties can be 
derived from the compliance matrix [𝑆], which is the inverse of the stiffness matrix [𝐶]: 

[𝑆] =  [𝐶]−1 = 
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The material properties are: 
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3. GEOMETRY OF LATTICE CELLS 

Two different elementary unit cells were investigated: the beam lattice cell (Fig. 1a) and the 
Schwarz’s P lattice cell (Fig. 1b). The former one was chosen due to the simplicity of the struc-
ture and the manageability of the model. The latter one features a completely different geometry 
from the first, as it is based on the Schwarz’s P ("Primitive") minimal surface. These lattices can 
be easily built by additive manufacturing. 

 (a)             (b) 
 

Fig. 1. Unit lattice cells. (a) Beam lattice cell; (b) Schwarz’s P cell 

Both the geometries have outer dimensions 10 mm x 10 mm x 10 mm. The geometric parame-
ter used for the beam unit cell is the mass fraction (m.f.), which is controlled by the diameter d 
of the beams, Fig. 2. The same geometric parameter was used for the Schwarz’s P cell as well. 
It was changed by altering the thickness t of the cell, Fig. 3. 

(a)  (b)  (c)  

Fig. 2. Beam unit cell.  
 (a) d=2 mm, m.f.=18% 
 (b) d=4 mm, m.f.=56% 
 (c) d=6 mm, m.f.=90% 

 

(a)  (b)  

Fig. 3. Schwarz’s P unit cell.  
 (a) t=0,5 mm, m.f.=12% 
   (b) t=1,5 mm, m.f.=35% 

 

4. WORKFLOW AND FE METHOD 

At first, two modelling parameters were examined aiming at choosing the most appropriate 
ones: the finite element length and the element type.  

The procedure followed is the one mentioned below: 
▪ Input of the CAD geometry in ANSA 
▪ Automated pre – processing of the model using a Python script. The same uniform mesh 

was generated in each beam to avoid mesh discrepancy effects on the results. The appro-
priate boundary and loading conditions were also imposed through the script. Due to the 
orthotropic material and the cubic symmetry, the elastic properties remain the same to-
wards every direction (Eq. 5). Thus, two runs were required. The first one applied for the 
calculation of Eeff and veff with the boundary conditions depicted in Fig. 4 and the second one 
for the calculation of Geff (Fig. 5) 
 

𝐸1 = 𝛦2 = 𝛦3 = 𝛦 ; 𝜈12 = 𝜈23 = 𝜈13 = 𝜈 ; 𝐺1 = 𝐺2 = 𝐺3 = 𝐺  (5) 

10 mm 
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▪ Output of the model and solution in ABAQUS 
▪ Results input into META post – processor 
▪ Effective material properties calculation (Eeff, veff, Geff) through an automated script in Python 

programming language  

 

 
Constrained Y 

 
Constrained Z 

 
Constrained X 

 
Displacement X 

Fig. 4. Constraints applied to calculate Eeff and veff 

 

  
Constrained Z 

 
 Constrained Y 

  
Displacement X,Y 

Fig. 5. Constraints applied to calculate Geff 

 

5. RESULTS 

5.1. FE Modeling 

5.1.1. Beam Lattice Cell 

C3D4 Elements: Starting with the beam lattice cell and using the ABAQUS C3D4 elements (first 
order, tetrahedral elements), the effect of the FE length is investigated. The parameter of fillet 
radius is also introduced, as no such structure is feasible to be built without a fillet radius. (Fig. 
6) The unit cell with R = 0 and the unit cell with R = 1 mm have a volume difference of only 2%. 
 

 

Fig. 6. Beam lattice unit cell without (left) and with 
fillet radius (right) 

 
The following Fig. 7, 8 and 9 show the convergence of the elastic properties’ values when com-
puted using the above mentioned first order elements. Selecting a FE length of 0,1 mm results 
in good accuracy and the following number of elements: 455264, 1260736 and 1752000 ele-
ments for the structures with beam diameters 2, 4 and 6 mm respectively. 

 

   

Fig. 7. Material properties ratio over number of C3D4 elements for d = 2 mm (m.f.=18%) 
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Fig. 8. Material properties ratio over number of C3D4 elements for d = 4 mm (m.f.=56%) 

 

   

Fig. 9. Material properties ratio over number of C3D4 elements for d = 6 mm (m.f.=90%) 

C3D10 Elements: Further investigation introduced the 2nd order tetrahedral ABAQUS C3D10 ele-
ments. The same accuracy as with the 1st order elements could be achieved with greater ele-
ment length (0,5 mm) and consequently, a significant reduction in the number of elements and 
CPU time needed, as it can be clearly seen in Fig. 10, 11 and 12. Specifically, for the structure 
with the beam diameter d = 2 mm, 7536 elements were needed, whereas for the diameters d = 
4 mm and d = 6 mm, the number of elements was 20152 and 29208 respectively. 

 

   

Fig. 10. Material properties ratio over number of C3D10 elements for d = 2 mm (m.f.=18%) 

   

Fig. 11. Material properties ratio over number of C3D10 elements for d = 4 mm (m.f.=56%) 
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Fig. 12. Material properties ratio over number of C3D10 elements for d = 6 mm (m.f.=90%) 

 

Table 1 shows the improvement in CPU time achieved when using 2nd order C3D10 elements 
instead of C3D4 ones. 

Table 1.  Comparison of 1st and 2nd order elements 
concerning CPU time. The accuracy is the same 

 
Element type C3D4 (1st order) C3D10 (2nd order) Ratio 

d=2, m.f.=18% Time [s] 1048 40 26,53 : 1 
 

Nodes 84707 13185 6,42 : 1 

d=4, m.f.=56% Time [s] 3877 266 14,58 : 1  
Nodes 241361 31845 7,58 : 1 

d=6, m.f.=90% Time [s] 6590 171 38,63 : 1 

  Nodes 323745 43961 7,36 : 1 

5.1.2. Schwartz’s P Lattice Cell 

Based on the experience gained with the beam element, the material properties of the Schwarz’s 
P unit cell were calculated using C3D10 elements. The results obtained for two unit cells with 
mass fractions 12% (wall thickness 0,5 mm) and 35% (wall thickness 1,5 mm) are shown in Fig. 
13 and 14. Sufficient convergence could be achieved at a FE length of 0,3 mm for both structures. 
The corresponding number of elements was 30360 elements for the thin structure and 54704 
elements for the thick one.  

   

Fig. 13. Material properties ratio over number of C3D10 elements for t = 0,5 mm (m.f.=12%) 

   

Fig. 14. Material properties ratio over number of C3D10 elements for t = 1,5 mm (m.f.=34%) 
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5.2. Verification 

A first indication that the results are qualitatively correct, is the fact that computed Eeff, veff and 
Geff of the lattice cell tend to the values of the bulk material as the mass fraction increases.  

However, in order to take into account, the “free edge effect” and increase the accuracy, lattice 
structures composed of multiple cells have to be analyzed. In the current study, a 3x3x3 (Fig.15a) 
and a 6x6x6 beam lattice structure (Fig.15b) was modelled using C3D10 type elements and FE 
length = 0,5 mm, as well as well as a 3x3x3 Schwarz’s P structure (Fig. 16) with wall thickness 
= 1,5 mm, C3D10 elements and FE length = 0,3 mm. The results and the deviations are depicted 
in Table 2 and 3. It can be clearly concluded that, the accuracy obtained with 3x3x3 structures 
is very good.  

 

 
 

 

(a) (b) 

Fig. 15. Beam lattice structure with (a) 3x3x3 units and (b) 6x6x6 unit cells 
 

 

 
 

Fig. 16. 3. Schwarz’s P lattice structure with 3x3x3 unit cells 

Table 2: Convergence of the calculated properties when increasing the count of unit cells 

Beam Lattice, d=2 , m.f.=18%  1x1x1 3x3x3 Deviation 6x6x6 Deviation 

Eeff 2903,78 2866,28 -1,31% 2865,96 -0,01% 

Geff 6210,94 6297,96 1,38% 6325,27 0,43% 

veff 0,436 0,437 0,13% 0,437 0,00% 
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Table 3: Convergence of the calculated properties when increasing the count of unit cells 

Schwarz's P Lattice, t=1,5 mm, m.f.=35% 1x1x1 3x3x3 Deviation 

Eeff 22807,23 22807,29 0,00% 

Geff 12548,41 13774,46 8,90% 

veff 0,338 0,338 0,00% 

 

6. CONCLUSIONS 

Actual parts featuring lattices are almost impossible to model and solve by simply meshing the 
initial geometry using solid mesh. For instance, a simple beam lattice of a diameter of 2 mm 
with 12 cells in each direction requires about 15 million elements to provide trustworthy results. 
That is why material homogenization becomes essential. 

In order to get precise material properties, a correct choice of the type of elements and the FE 
length must be made. According to the two types of unit cells investigated, 2nd order elements, 
like the ABAQUS C3D10 ones, provide accurate results with the acceptable cost in solution time 
once the element length is chosen properly to match cell geometry. 

As the number of the unit cells in each direction increases, the material properties converge to 
certain values. According to this study, a lattice of 6x6x6 unit cells provides a very good approx-
imation to the actual properties of the lattice. 
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