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Background

➢ Time-dependent reliability considers performance through time. 

Such a design can, among others:

✓ Reduce warranty cost

✓ Increase customer satisfaction

✓ Identify maintenance schedules

➢ Real systems are large with millions of degrees of freedom

DOF (> 5 million)

➢ Small number of nonlinear components (e.g. active suspension, 

tires) exist in large vibratory systems along with large linear 

vibratory subsystems (e.g. trim body).

The response of time-dependent systems is a random process
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Challenges:

• Quantification of a Input Random Process (Gaussian/Non-Gaussian).

• Calculation of Output Uncertainty (Gaussian/Non-Gaussian).

• Propagation of Uncertainty (Linear/nonlinear Systems).

❖ Reduce the number of system simulations needed for TD-RBDO.

❖ Reduce computational cost of each simulation for large vibratory systems.

Design Under Uncertainty

Random 

Variables

Time-Independent

Random 

Processes

Time-Dependent

Simulation

Linear/Non-Linear 

System
Input Output

Uncertainty 

(Quantified)
Uncertainty 

(Calculated)

Updated Design (Optimization)

Propagation
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Quantification and Propagation of Uncertainty
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Quantification of a Random Process

A zero mean, stationary Gaussian process is fully characterized by its 

autocorrelation function.

( ) 2R  = = xx

Correlation Length

For a non-Gaussian process we need skewness and kurtosis in addition to 

the autocorrelation function.

Marginal PDF at t1
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Response of a Linear Vibratory System
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Definition of Failure

8

Failure if defined as an event where, response 

exceeds certain threshold.
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Schematic of TD-RBDO Approach (Simulation-Based)
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e.g. Rough Road ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,m t c t k t t+ + + =          X Y X Y X Y h Y Y Y X F

Component Mode  Synthesis 

(CMS) after partitioning the 

system into linear and 

nonlinear substructures for 

efficient system simulation.

Response

Time 

Dependent 

Reliability 

Analysis

Random Variables

Example: m1, k1, etc

Random Processes
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Non-Gaussian Loading and Non-Linear System
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Metamodel of Output Autocorrelation Function for 
Random Vibration of Non-Linear Systems
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Background: PCE-KL Method

Polynomial Chaos Expansion – Karhunen Loeve Expansion (PCE-KL)
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ξ(t): Standard Normal 

Process

bi: coefficients to be 

calculated
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Define the first 4 “target” moments of non-Gaussian random variable Z 

  0bZE Z == 

...])[( 2
0

2 =−= bZEmZ

...])[( 3
0

3 =−= bZEmZ

...])[( 4
0

4 =−= bZEmZ

4 Equations , 

4 Unknowns (b0, b1, b2, b3)

Solve optimization problem

“Characterization” 

of random process

Development of a stochastic metamodel

for generating trajectories of the process 
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Background: PCE-KL Method

Using orthogonality properties of Hermite polynomials:

( ) ( ) ( ) ( ) ( ) ( ) ( )
=

=
1

212121 !,
i

i
iiZZ ttEitbtbttC  CZZ(t1,t2): Covariance

Known (given) Only Unknown (Calculate)

( ) ( ) ( ) 2121, ttEttC  = Trajectories of ξ(t) using K-L Expansion 

K-L Expansion                       λi: Eigenvalues of

fi(t): Eigenvectors of

ξi: Independent standard normal variables
( ) ( ) ii

N

i
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Realization of ξi in N dimensions
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Background: PCE-KL-QMC Method

As N increases, M increases 

considerably. 

M “space filled” 

trajectories

in N dimensions

Nonlinear   

Vibratory System

“M” Output

trajectories

Generate new output 

trajectories without solving 

the system 

Moments and

Autocorrelation of 

output
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Quasi Monte Carlo Method (QMC) 

M is the number of system 

simulations required. 
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Computational Cost of Quasi Monte Carlo Method

N (no. of dimensions in KL) = no. 

of significant eigenvalues

ts - Dominated by correlation length of output

Simulation 

Time (s)

No. of 

Eigenvalues in 

KL

No. of simulation of  

large vibratory system

15 30 >500

9 13 200

3 6 60

For a narrow-band process, 

the correlation length is 

large e.g. (> 15 sec).

Computational cost increases considerably with increasing simulation length
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Metamodel Approach for Autocorrelation Function 

decayconstant

amplitudeA

 =

=

➢ A set of decaying sinusoids is used to approximate the autocorrelation 

function (inverse Fourier transform of a Gaussian Function). 

➢ A global Genetic Algorithm fits all parameters.

✓ Small number of system simulations required.

✓ Duration of each simulation is short.
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No. of Terms - n and Optimal Training Length

Develop an initial “fit” using the autocorrelation of the “linearized” System:

 ( ) ( ) ( )
2

YY FFS H S  =
FRF of Linearized System (e.g. 

linearized at mean)

n
Root-Mean-Square 

Error (RMSE)

1 0.0191

2 0.0103

3 0.0003581

4 0.0003479

Inverse Fourier of PSD 𝑆𝑌𝑌(𝜔)
provides the autocorrelation of the 

linearized system.
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AR Extrapolation to Address Burn-in period 

Transient but 

artificial effect 

of initial conditions

1
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Auto-regressive (AR) 

Extrapolation using 

Burg’s Method
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Automotive Truck with Non-Linear Mounts

Input Process 𝐹(𝑡)

Non-Gaussian force

4.5 Million DOFs

Non-linear mount

locations

Output Process  𝑦(𝑡)

Non-Gaussian displacement at 

seat attachment point
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Input Correlation

Length

5.2=cor

F


Characterization of Input Process F(t)

Weibull distribution 
Parameters: scale=5 , shape=1.2

First 4 statistical moments

Autocorrelation Function

Create PCE stochastic metamodel for 

input process and generate 

trajectories of F(t).
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Characterization of Input Process F(t)

FRF of Linearized System

Non-linear stiffness and 

corresponding linearization

No. of terms = 3
Optimal Training 

Length = 1 sec
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Characterization of Input Process F(t)

# of Sample 

Pts M

Mean 

(N)

Std. Dev. 

(N)
Skewness Kurtosis

10 4.45 3.8 0.87 2.33

20 4.53 3.61 0.85 2.58

30 4.68 3.53 1.05 3.46

40 4.72 4.19 1.59 5.35

250,000 

MCS
4.70 3.94 1.52 6.15

Target 4.70 3.94 1.52 6.24

➢ For training length of 1 sec,  3 

dominant eigenvalues are needed for 

KL expansion of input process.

➢ We use a space filling design 

(OSLH) in 3 dimensions to get M 

space-filled trajectories of input 

process.

➢ Burn in Period for this example is 1 

seconds. Backward AR 

Extrapolation for additional 1 

second is performed to address that

QMC efficiency for moment estimation
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Characterization of Output Process Y(t)

# of 

Sample 

Pts M

Mean 

(N)
Std. Dev. (N) Skewness Kurtosis

10 0.035 0.027 0.70 2.06

20 0.039 0.0296 0.7 2.07

30 0.0373 0.0305 1.0 3.17

40 0.0374 0.0311 1.50 5.19

50 0.0374 0.0310 1.48 5.20

Term 

No.

Amplitude 

(N)

Decay constant 

(N)
Frequency Phase

1 0.3922 2.4502 373.7885 8.4962

2 0.7091 1.7275 126.8746 5.1885

3 0.7044 1.8044 374.8402 4.4764

➢ Calculate the 4 moments and 

partial autocorrelation of output 

displacement process y(t).

➢ Develop the metamodel of 

autocorrelation function.

Parameters of Metamodel of Output 

Autocorrelation Function

Moments of Output
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Time-Dependent Probability of Failure

➢ Develop PCE stochastic metamodel for output process Y(t).

➢ Generate new trajectories of Y(t), using the metamodel to calculate 

time-dependent probability of failure.

Trajectories of Output Probability of Failure
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EOM for ith Substructure

Craig-Bampton transformation 

using substructure normal modes 

and constraint modes)

Craig-Bampton CMS and Total Cost
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No Substructure
Modal 

DOFs

Physical 

DOFs

Total 

DOFs

1 Cab 163 - -

2 Bed 64 - -

3 Frame 103 - -

0 Residual - 6 336

No. Substructure
Computational 

Cost

1 Cab Modal Model 14 min x1 

2 Bed Modal Model 2 min x 1

3 Frame Model 3 min x 1

4
Residual Time 

Integration
2 sec. x 40 = 80 sec.

Number of simulations required = 40

Duration of each simulation = 2 sec.
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4.5 million DOF -> to 336 modal DOFs

Non-linear transient simulations needed 

for time-integration 
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Summary and Conclusions

➢ Presented a method for time-dependent reliability analysis of non-

linear systems under non-gaussian loads using a Metamodel of 

Autocorrelation approach.

➢ This approach drastically reduces number of system simulations 

required.

➢ AR Extrapolation to address the effect of Burn-in period.

➢ CMS to handle non-linear components.

Example demonstrated the accuracy and efficiency of above 

techniques.
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