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Background

The response of time-dependent systems is a random process

» Time-dependent reliability considers performance through time.
Such a design can, among others:

v Reduce warranty cost
v Increase customer satisfaction
v ldentify maintenance schedules

» Real systems are large with millions of degrees of freedom
DOF (> 5 million)

» Small number of nonlinear components (e.g. active suspension,
tires) exist in large vibratory systems along with large linear
vibratory subsystems (e.g. trim body).
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Design Under Uncertainty

Simulation
Random " 1
roesses | INPUL ——> Linear/Non-Linear —— Qutput
Time-Dependent 1 System ‘
S i
P Uncertainty Propagation ¢~ Uncertainty
N (Quantified) (Calculated)
/
Random T ‘
Variables

Updated Design (Optimization)

Time-Independent

Challenges:
« Quantification of a Input Random Process (Gaussian/Non-Gaussian).
 Calculation of Output Uncertainty (Gaussian/Non-Gaussian).

* Propagation of Uncertainty (Linear/nonlinear Systems).

¢ Reduce the number of system simulations needed for TD-RBDO.
¢ Reduce computational cost of each simulation for large vibratory systems.
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Quantification and Propagation of Uncertainty

Case 1:

Case 2:

Case 3:

Case 4:
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Quantification of a Random Process

Marginal PDF at t;

22T

T(sec)

A zero mean, stationary Gaussian process is fully characterized by its
autocorrelation function.

For a non-Gaussian process we need skewness and kurtosis in addition to
|i the autocorrelation function.
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Response of a Linear Vibratory System

Stationary, Gaussian Input F(t
y p (t)

Random Processes

Input Random Variables L;

(e.g. Stiffness, Damping)

!_Inear Y(t) Output Processes
Vibratory —> (Stationary, Gaussian)

System

PSD of Output —>| SYY (a)) = |H (Cf))‘2 SFF (a)){(— PSD of Input

!

P, (0,T) =P+~ P f(tht

0

\

FRF

Time-Dependent Probability of Failure

P{Y(0)> !} : Instantaneous probability of failure at t=0.

. PDF of the first time to failure calculated using notion of up-crossing (v*)

|' and joint up-crossing (v**) rate.
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Definition of Failure

FAILURE

Y(t)

ﬂ--

DA

Time

Failure If defined as an event where, response
exceeds certain threshold.
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Schematic of TD-RBDO Approach (Simulation-Based)

Non-Gaussian Loading and Non-Linear System

I Random Variables

Time
_ Dependent
Example: m,, ky, etc [ Response Reliability
I Random Processes Analysis

Fh(Y,Y, Y, X)=F(t)

Response
F 1

Component Mode Synthesis \
(CMS) after partitioning the
system into linear and

nonlinear substructures for
efficient system simulation.




Metamodel of Output Autocorrelation Function for

Random Vibration of Non-Linear Systems
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Background: PCE-KL Method

“Characterization” ‘ Development of a stochastic metamodel
of random process for generating trajectories of the process

Polynomial Chaos Expansion — Karhunen Loeve Expansion (PCE-KL)

Z (t) = > [oj)(t) P (t) = bg (t) + by (t)E(L) + by (t)(é:Z (t)— 1) b;: coefficients to be
i=0 calculated
+by O3 -320))+ba Ol () -652 () +3)+| - F1): Standard Normal

\

Define the first 4 “target” moments of non-Gaussian random variable Z

—_

E[Z]=nz =bo 4 Equations
m% — E[(Z _bO)Z] — 4 Unknowns (b,, by, b,, by)

m3 = E[(Z —bg)*]=... » ‘

Solve optimization problem

—

Ii mZ = E[(Z —bp)*]=..
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Background: PCE-KL Method

Using orthogonality properties of Hermite polynomials:

@) Z b; (t1)bi (tz ) (i!)' i C2,(t,,t,): Covariance

Known (given) Only Unknown (Calculate)

ngg(tl,tz) = E[g‘(tl)é(tz )] -Trajectories of §(t) using K-L Expansion

| K-L Expansion A.: Eigenvalues of Cé;gg(tl,tz) I
Zx/i £ f.(t): Eigenvectors of ng(tbtz) I
@\ &;: Independent standard normal variables :

Realization of &; in N dimensions
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Background: PCE-KL-QMC Method

M “space filled”
trajectories
in N dimensions

Quasi Monte Carlo Method (QMC)

M Output

Nonlinear
= Vibratory System trajectories

Moments and

Autocorrelation of
M is the number of system output

simulations required.

Generate new output
As N Increases, M increases trajectories without solving
considerably. the system
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Computational Cost of Quasi Monte Carlo Method

N (no. of dimensions in KL) = no.
of significant eigenvalues

;t =2.5sec

w

—t=bsec

(7]

——1t =10 sec ||

w

——t =15sec

w

cor cor
- 2111{:1:«;(1}i T . T

n

10 15 20
Eigenvalue Number

25 30

For a narrow-band process,

: : 15 30 >500
the correlation length is
large e.g. (> 15 sec). 2 13 200
3 6 60

Computational cost increases considerably with increasing simulation length
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Metamodel Approach for Autocorrelation Function

» A set of decaying sinusoids is used to approximate the autocorrelation
function (inverse Fourier transform of a Gaussian Function).
» A global Genetic Algorithm fits all parameters.

1.2

R, ()= Ae7sin(, ~ )|
k=1

—MCS
—e— Training Points| -
- - Metamodel

Metamodel training Length

y = decay constant a = phase
A =amplitude @ = frequency

n = number of terms In summation 04

0 2 4 6 8 10
7 (sec)

v Small number of system simulations required.
v" Duration of each simulation is short.
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No. of Terms - n and Optimal Training Length

Develop an initial “fit” using the autocorrelation of the “linearized” System:

S () {1 ()] S (@) -
FRF of Linearized System (e.qg.

o linearized at mean)

Inverse Fourier of PSD Syy (w)
provides the autocorrelation of the

linearized system. 1 | | = Li_ne;ﬁzed =1
- —n=1
e\ e ]
0.6 A :‘:: :‘:'j_--_._,___________:_f,_,...-"‘" —men=4
= 04r
n Root-Mean-Square 3
Error (RMSE) < o
1 0.0191 ot
2 0.0103 02)
3 0.0003581 04}
4 0.0003479 08 2, :1 é é |
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AR Extrapolation to Address Burn-in period

0.25
021
=0 Transient but
s O artificial effect
0.05 of initial conditions
0
0.05 : : : .
0 0.5 1 1.5 2 2.5 3
e Auto-regressive (AR)
B P e I i Extrapolation using
o - ozmooos ] Burg’s Method

-
w
T

Force (N)
=

P
Yo = _Z Ay Yn-m T6,
m=1

WA 1
WEAMLLN B

R Y. = samples of time series @, = model coefficients
A p = order of the model e, = residual
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Automotive Truck with Non-Linear Mounts

4.5 Million DOFs

@ Non-linear mount
locations

Output Process y(t)

Non-Gaussian displacement at
seat attachment point

Input Process F(t)
Non-Gaussian force
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Characterization of Input Process F(t)

Weibull distribution
Parameters: scale=5 , shape=1.2

First 4 statistical moments

Quantity Description Value
Uj Mean 4.7
m> (= o¢?) Variance 15.5
m;z / o3 Skewness Coefficient 1.5
my/ o* Kurtosis Coefficient 6.2

¥

Create PCE stochastic metamodel for
Input process and generate
trajectories of F(t).

Peelt)

Autocorrelation Function

1

*9 Input Correlation

Length
7 =25

0.6}

0.4

0.2

1 (sec)
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Characterization of Input Process F(t)

500
400 F —Non-linear Stiffness A E ”
--=-Linear Fit A - L . :
300 | N FRF of Linearized System
200 - o % |
g & o125
g 100 - ‘,-”/, TE 0.125
g 0 _ = ,Eu 0.1
3 ’,.r‘ g
Y- 100+ _/-"’ = 0.075¢
-200 r ,.’"—/ E 0.05}
o - - E
300 /L Non-linear stiffness and Enozsj L{\
400 corresponding linearization &
0 5 10 15 20 25
ST 01 0 01 02 Frequency (Hz)
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1.2
- |inearized System 1.2 I e I T ed S
1L —n=1 inearized System
- = n=2 1 ---0.5sec
- - n=3 ---1sec
081 L
0.8 ---15sec
—2secC
E 061 =~ 06}
> No. of terms = 3 RS : -
< 04f < 04t Optimal Training
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0.2 0.2¢1
o = ST Or TEE——
-02 L L '02 ‘ : I I ‘
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Characterization of Input Process F(t)

> For training length of 1 sec, 3 QMC efficiency for moment estimation

dominant eigenvalues are needed for ~ *er>ample | Mean | Std Dev

Skewness | Kurtosis

Pts M (N) (N)
. . 10 4.45 3.8 0.87 2.33
KL expansion of input process. 20 253 | 361 0.85 > 58
30 4.68 3.53 1.05 3.46
> We use a space filling design [ 40 472|419 159 5.35 |
OSLH) i di ] M Zﬁ;l)ggo 4.70 3.94 1.52 6.15
( ) In 3 Imensions to get Target 4,70 3.94 1.52 6.24
space-filled trajectories of input o e e A

(1 second) (1 second)

Process.

» Burn in Period for this example is 1

seconds. Backward AR

Extrapolation for additional 1

|i second is performed to address that
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Characterization of Output Process Y(t)
Moments of Output

> Calculate the 4 moments and Mean D skewness  Kurtosi
partial autocorrelation of output o
displacement process y(t). 10 00% 0.027 0.70 2.06
20 0.039 0.0296 0.7 2.07
> Develop the metamOdel O.I: 30 0.0373 0.0305 1.0 3.17
- . 40 0.0374 0.0311 1.50 5.19
autocorrelation function.
50 0.0374 0.0310 1.48 5.20
1.2
: ——Linearized System
Tﬁlgr.n Amzl\:;ude Decay(?\IO)nstant Frequency 1. :e__.lr;eati;::gdi{l}ims
1 0.3922 2.4502 373.7885 8.4962 08¢
2 0.7091 1.7275 126.8746 5.1885 —~ 06}
<o
3 0.7044 1.8044 374.8402 4.4764 5 04l
0.2
Parameters of Metamodel of Output ot
Autocorrelation Function

0 0.5 1 1.5 2 2.5 3
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Time-Dependent Probability of Failure

» Develop PCE stochastic metamodel for output process Y(t).

» Generate new trajectories of Y(t), using the metamodel to calculate
time-dependent probability of failure.

0.25 . . - - . . 0.7

a1 =0.10m

02 V/ J 06' -- 2 0.15m
\
/ I
0.15% '\ \ /\ // \\ P '
l\‘ 4 ‘ - A

,- \ IRA
T '\.A \
£k ! *" ADSRS
p \.N \,, m\,' ﬁ \H:S,’,\%v
0 ”“’ 2.5 %az‘ SRS
-0.05 *
0 2 4 6 8 10 12 14
t(s)
Trajectories of Output Probability of Failure
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Craig-Bampton CMS and Total Cost

l Substructure 2: Truck Bed | M Odal PhyS | Cal TOta|
\ No | Substructure DOEs DOEs DOEs

Substructure 1: Cab

1 Cab 163 - -
2 Bed 64 - -
3 Frame 103 - -
0 Residual - 6 336

I Substructure 3: Frame

4.5 million DOF -> to 336 modal DOFs

Non-linear transient S|mulgt|ons needed Number of simulations required = 40
for time-integration Duration of each simulation = 2 sec.
ith
EOM for it" Substructure N b Computational
e Tk ke (r) (¢ 0. ubstructure Cost
[m;)r m;m:Hu;z} + {k;)r k;zQ:Hu;z} - {f_lg} 1 Cab Modal Model 14 min x1
| ' | | ' | | 2 | Bed Modal Model 2 min x 1
Craig-Bampton transformation 3 :raf‘ge '}"?_‘3'9' 3 min x1
. esidual Time B
using substructure normal modes 4 Integration 2 sec. x 40 = 80 sec.

and constraint modes)
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Summary and Conclusions

» Presented a method for time-dependent reliability analysis of non-

linear systems under non-gaussian loads using a Metamodel of
Autocorrelation approach.

» This approach drastically reduces number of system simulations
required.

» AR Extrapolation to address the effect of Burn-in period.
» CMS to handle non-linear components.

Example demonstrated the accuracy and efficiency of above
techniques.
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Questions & Answers

THANK YOU




