Closures Deformation Optimization Considering Kinetic system

JS. SHIN

Contents

Introduction

Closure Deformation

Body

- 1. Overview of Technology Development
- 2. Development process
- 3. Conclusion and Future plan

Closure Deformation By Opening Equipment

Closure Deformation

Deformation ↑ GAP & FLUSH ↑

Appearance Quality \downarrow

1. Overview of Technology Development

Purpose

- Development of a technique that minimize deformation while satisfying the opening/closing force of the closures through kinetic system optimization

Content

Effects

- To derive an improvement plan that minimize cost and weight increase
- Reduce car development time without the need for data transfer between design/simulation part

1. Process

Kinetic Model Conversion

 Model conversion for Kinetic simulation

 Kinetic model generation of Acting hinge structures (Gas spring + Link of Hinge)

Opening/Closing Simulation Closure Opening/Closing simulation

٠

1. Process

User manually configure kinetic system and input every value in system → Overtime & Complex

🚯 Task Manager						
Tasks						
Root	<u> </u>					
🗖 🗐 Define Bodies						
🗆 🗐 Create Joints	\square					
🗆 🗐 Create Forces	U					
🗖 🗐 Set the rest entities						
🗆 🗐 Run opening and closing scenario	0					
🗆 🗐 View Results	C					
🗆 🗐 Set Optimization task	3					

Development Kinetic System Analysis Automation Tool (S/W : ANSA)

Automate the entire process using task manager

1 Kinetic Model Conversion

② Opening/Closing simulation

	Experiment 30 29 28 27 26 25 24	force 2.5662 6.9527 2.9736 0.819451 4.5678 7.2358 0.226505	angle 15,4445 20,4046 14,545 16,1605 15,4261 18,344 15,8173	MOVE ADJUST
	27	0.819451	16.1605	NOVE
\square	26	4.5678	15.4261	
\square	25	7.2358	18.344	
\square	24	0.226505	15.8173	MOVE ADJUST
\square	23	5.9192	13.4407	
\checkmark	22	1.2452	15.1931	
\square	21	4.7973	20.692	
\checkmark	20	3.9483	20.4683	

2-1. Kinetic Model Conversion

2-2. Opening/Closing Force Analysis

2-3. Optimization

2-3. Optimization

2-4. Applicable Case

Improved Deformation by $14.9\%(0.598 \text{mm} \rightarrow 0.509 \text{mm})$

→ Kinetic Optimization can improve deformation without increasing parts thickness & size

1. Conclusion

- Develop closure deformation optimizing considering kinetic system
 - Position and Force of Gas spring that satisfies Opening/Closing force and minimize Deformation can be derived
 - \rightarrow Suggest optimal improvement plan
 - Cost and Weight reduction by minimizing part size and thickness increase
 - \rightarrow Improve vehicle performance and profitability

2. Future Plan

Improved Optimization

- Since it is difficult to predict the amount of deformation in model before the deformation simulation
 - \rightarrow current optimized target : Gas spring Force.
- Composition of deformation prediction logic according to position and force of Gas spring using machine learning
 - \rightarrow Upgrade Optimizing tool using the **amount of deformation as a target value**.

E-mail address : sjs101010@hyundai.com