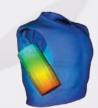

EPILYSIS SOLVER

What is **EPILYSIS**?

Linear Analyses


- Static (SOL101)
- Real Eigenvalue (SOL103)
- Complex Modal (SOL110)
- Direct Transient Response (SOL108)
- Direct Frequency Response (SOL109)
- Modal Transient Response (SOL111)
- Modal Frequency Response (SOL112)

- Sizing
- Topometry
- Topology
- Shape

Non-linear Contacts (SOL400)

• Linear Elements / Materials

Performance

MUMPS linear solver

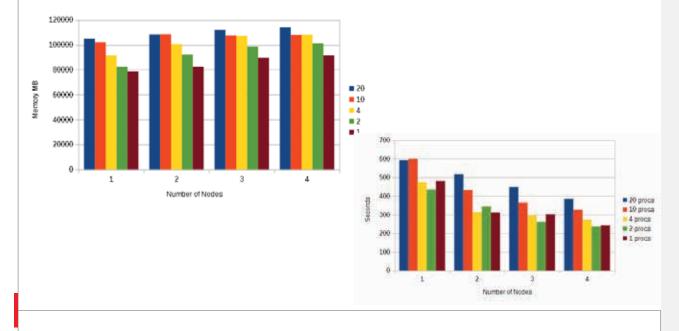
MPI interface

MKL ILP64

Performance Upgrades

Parameter LSOLVER with options: 1. MUMPS 2. PARDISO

- A mature solver with established track record in industry
- Excellent memory management
- Improved multi-threaded performance
- Reduces the performance penalty for large models


MUMPS linear solver

(Multifrontal Massively Parallel Sparse direct solver)

Performance Upgrades

Current restrictions for solving with MPI:

- Supported for all static and dynamic solutions.
- Supported only for Linux machines with Intel processors.

422.7.4

High performance computing "Message Passing Interface (MPI)"

Performance Upgrades

MKL LP64 Old 32bit MKL library had limitations in very large models and multiple loadcases.

ILP64 64bit integers.

MKL ILP64 New 64bit MKL library removes the limitations and larger models can be solved.

Analysis Tools

MNF Builder

Normal Modes Analysis

Manufacturing Constrains Check

Grounding Check Analysis

Analysis Tools

Contents	Define Interface Nodes				And a state of the		×	
Interface Simplification	II Connections							
Parameters	33 Name 961101 961102 961103 961104 961105 961106	Type CBAR CBAR CBAR CBAR CBAR	Include	Comment			€.	
	901107 961107 961108 961108	CBAR CBAR CBAR CBAR				1	v Mal Jan	
	Interface Nodes Consider as interface: Indes of external FE Connectors Indes with field 10 A/LC points							
	1/2 Componentis 101 123456 102 123456 112 123456 113 123456 163 123456 183 123456						7	

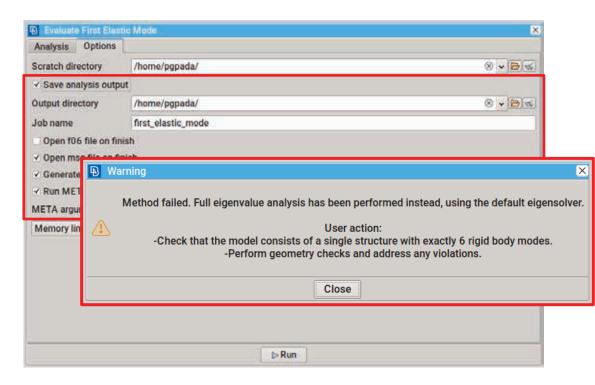
MNF Builder

Instant modal reduced representations

Display Model to reduce size

Analysis Tools

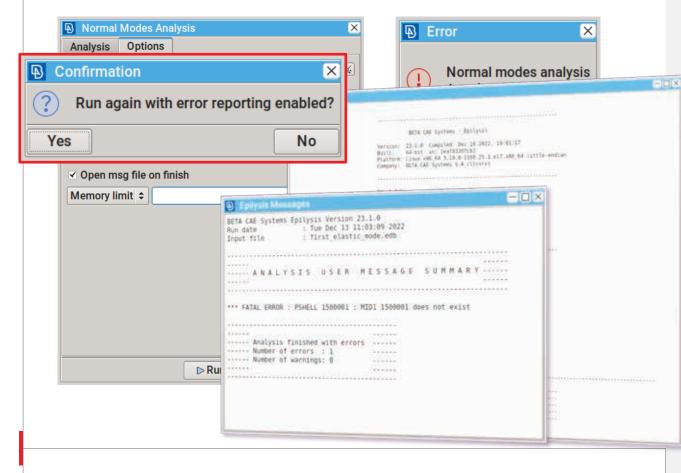
Analysis	Options					
Reference	grid	1				
5train ener	gy threshold	[0.0	001
Srounding	force threshold	(.01
DOF set		∀ G	¥ N	Ƴ F		1
MPC						
SPC		1				
Contact		[1
Output		All				¢



Grounding Check

Quick identification of unexpected constraints in the model

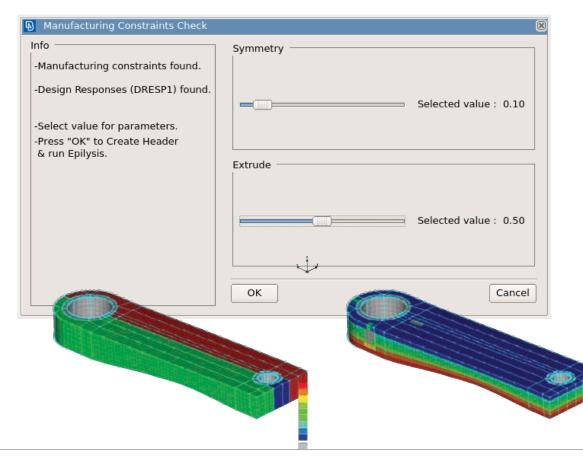
Epilysis Tools



Save analysis output in all Epilysis Tools

Output an op2 and "Run META" in the First Elastic Mode Evaluation

423.1.4


Epilysis Tools

Reporting in case of errors.

423.1.4

Plugins

Manufacturing Constraints Check

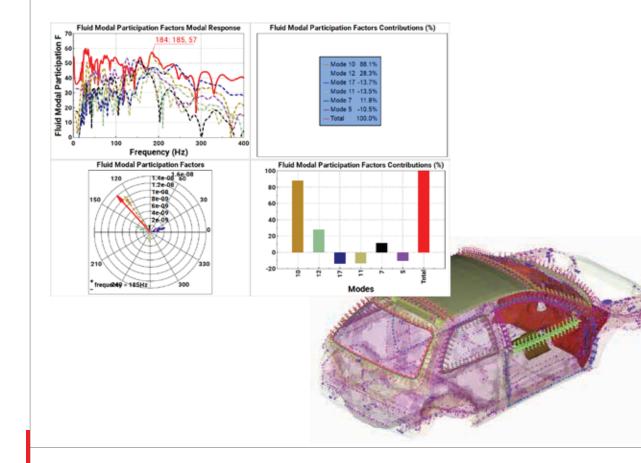
Quick identification of problematic areas in the model

Parameter: TOPCOUT

1 2

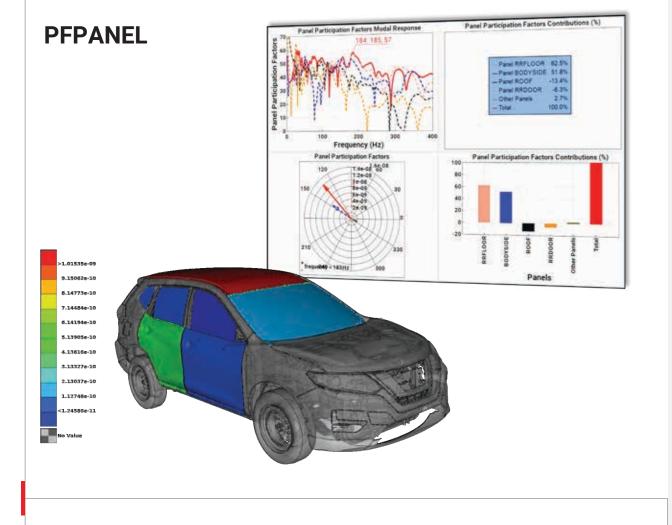
422.0.4

Dynamics


PFMODEL, PFPANEL, PFGRID

Fluid Structure Interaction

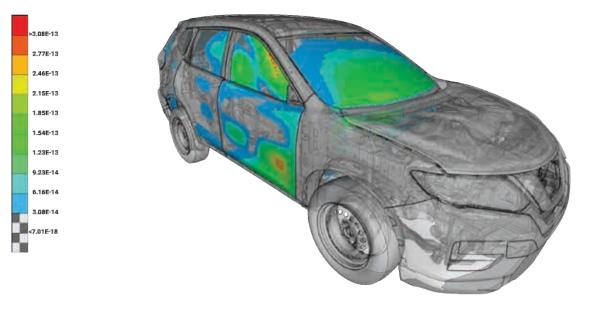
FMU and Modal Model


Element Sensitivity

PFMODE

Support of PFMODE modal participation factors.

422.1.4

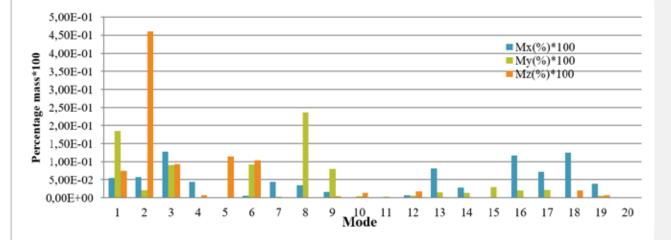

Participation Factors for Panel have been implemented through

PFPANEL Command

and PANEL entry.

ß

PFGRID

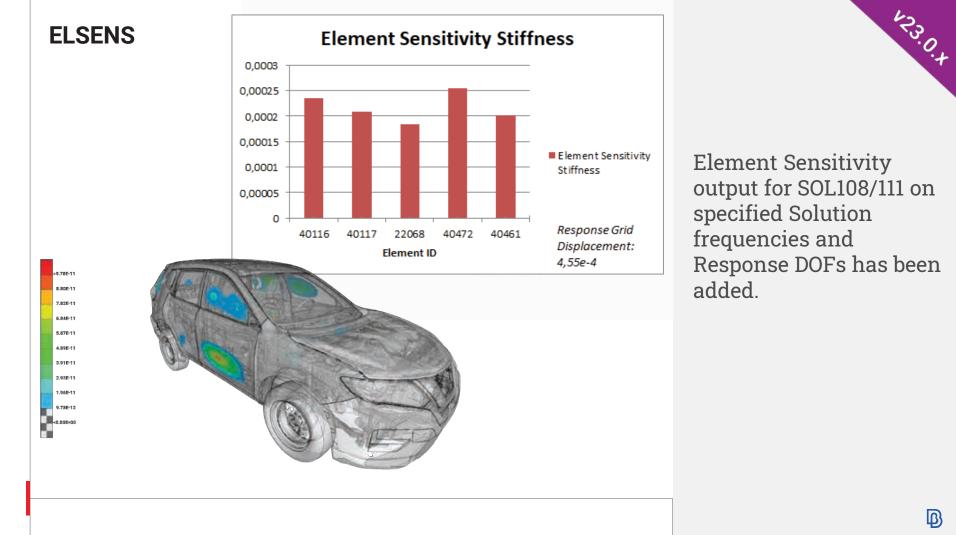


423.0.+

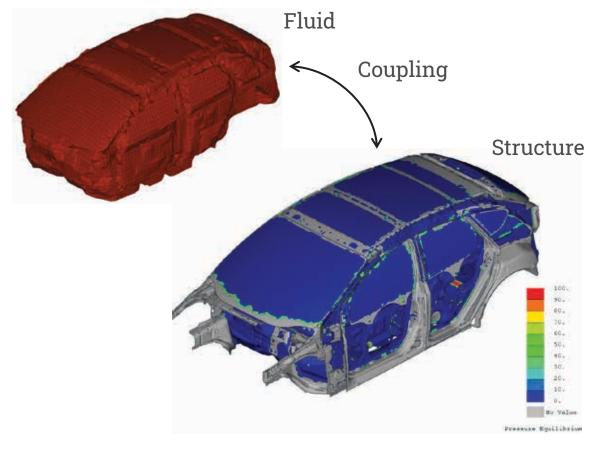
Grid Participation Factors have been implemented through PFGRID Command.

The participation of the Fluid nodes on a Structural DOF response has been supported as an extra development.

MEFFMASS

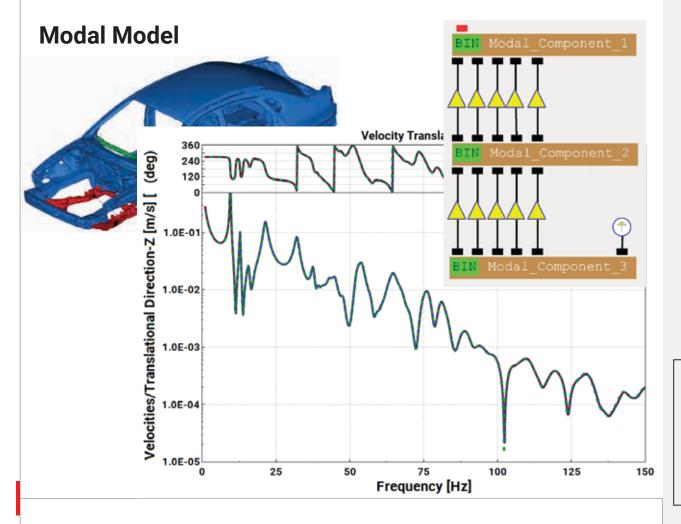


Modal effective mass command has been implemented


• MEFFMASS helps identify the direction and percentage of the mass that is moving in each mode.

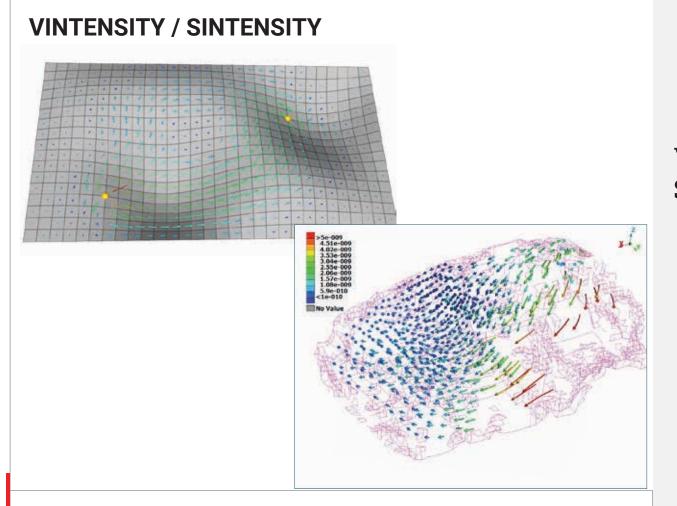
ß

423.0.4


FSI

New Pressure Equilibrium Fluid Structure Interaction method has been implemented.

4230.4



Fast SOL103 Epilysis

 Support of modal damping matrices
BHH and KHH (input and output)

Session 7C: Comparison of the numerical accuracy of Superelements and FRF Assembly Markus Herbst

423.1.4

Vibration and Sound Intensity

428.0.4

FMU

Multibody Dynamics Export command

Generation of Function Mock-up Unit format State Space equations

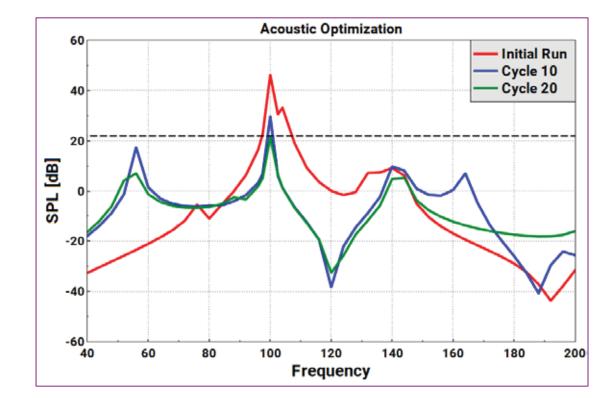
423.0.4

AMLS

PARAM, AMLSBS , 700			
PARAM, AMLSSS , 3000			and the state of a
PARAM AMI SHC A DOG			
PARAM, AMLSWG , 1.500 PARAM, AMLSWA , 5.000			
PARAM, AMLSWD , 0.800			
PARAM, AMLSWVB , 1.700			
PARAM, AMLSWVS , 1.100			
PARAM, AMLSHOUT, 0			
PARAM, AMLSHOOF, 2100			
PARAM, AMLSNEIG, 20			
PARAM, ALLDISP, 6			
PARAM, AMLSRVT, 0.000			
PARAM, P2MAP , NO			
AMIC INDUT TADIE			
			140970
AMLS INPUT TABLE			140970
NUMBER OF DOFS BLOCK SIZE		- 4	700
NUMBER OF DOFS BLOCK SIZE SUBTREE SIZE		• •	700 3000
NUMBER OF DOFS BLOCK SIZE SUBTREE SIZE NUMBER OF RIGID BODY MODES KNOWN			700 3000 0 1,000 Hz
NUMBER OF DOFS BLOCK SIZE SUBTREE SIZE NUMBER OF RIGID BODY MODES KNOWN TOLERANCE FOR RIGID BODY MODES	(WF		700 3000 0 1.000 Hz 600.000 Hz
NUMBER OF DOFS BLOCK SIZE SUBTREE SIZE NUMBER OF RIGID BODY MODES KNOWN TOLERANCE FOR RIGID BODY MODES HIGHEST EXCITATION FREQUENCY	ING		700 3000 0 1.000 Hz 600.000 Hz 900.000 Hz
NUMBER OF DOFS BLOCK SIZE SUBTREE SIZE NUMBER OF RIGID BODY MODES KNOWN TOLERANCE FOR RIGID BODY MODES HIGHEST EXCITATION FREQUENCY GLOBAL CUTOFF FREQUENCY	(WG		700 3000 0 1.000 Hz 600.000 Hz 900.000 Hz 4509.000 Hz
NUMBER OF DOFS BLOCK SIZE SUBTREE SIZE NUMBER OF RIGID BODY MODES KNOWN TOLERANCE FOR RIGID BODY MODES HIGHEST EXCITATION FREQUENCY GLOBAL CUTOFF FREQUENCY CUTOFF FREQUENCY FOR SUBSTRUCTURE FIGENWALUS	(WG (WA		700 3000 0 1.000 Hz 600.000 Hz 900.000 Hz 4500.000 Hz 3600.000 Hz
NUMBER OF DOFS BLOCK SIZE SUBTREE SIZE NUMBER OF RIGID BODY MODES KNOWN TOLERANCE FOR RIGID BODY MODES HIGHEST EXCITATION FREQUENCY GLOBAL CUTOFF FREQUENCY CUTOFF FREQUENCY FOR SUBSTRUCTURE EIGENVALUE CUTOFF FREQUENCY FOR SUBSTRUCTURE EIGENVALUE CUTOFF FREQUENCY FOR SUBSTRUCTURE EIGENVALUE	(WG (WA		700 3000 0 1.000 Hz 600.000 Hz 900.000 Hz 4500.000 Hz 3600.000 Hz
NUMBER OF DOFS BLOCK SIZE SUBTREE SIZE NUMBER OF RIGID BODY MODES KNOWN TOLERANCE FOR RIGID BODY MODES HIGHEST EXCITATION FREQUENCY GLOBAL CUTOFF FREQUENCY CUTOFF FREQUENCY FOR SUBSTRUCTURE EIGENVALUE CUTOFF FREQUENCY FOR SUBSTRUCTURE EIGENVALUE CUTOFF FREQUENCY FOR SUBSTRUCTURE EIGENVALUE	(WG (WA		700 3000 0 1.000 Hz 600.000 Hz 900.000 Hz 4500.000 Hz 3600.000 Hz 1530.000 Hz
NUMBER OF DOFS BLOCK SIZE SUBTREE SIZE NUMBER OF RIGID BODY MODES KNOWN TOLERANCE FOR RIGID BODY MODES HIGHEST EXCITATION FREQUENCY GLOBAL CUTOFF FREQUENCY CUTOFF FREQUENCY FOR SUBSTRUCTURE FIGENWALUS	(WG (WA		700 3000 0 1.000 Hz 600.000 Hz 900.000 Hz 4500.000 Hz 3600.000 Hz

AMLS Enhancements

- Improved robustness
- Additional parameters for better control
- New information in f06

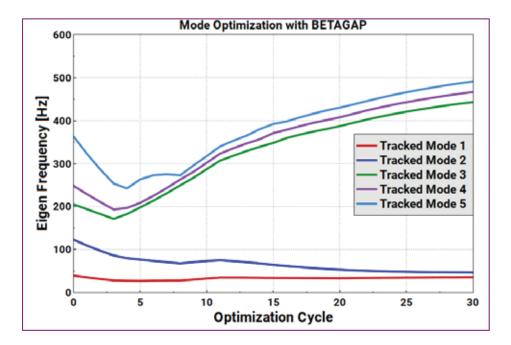

Optimization

Optimization with Dynamic LCs

Laminates Enhancements

Cross-Section Optimization

Orthotropic Materials

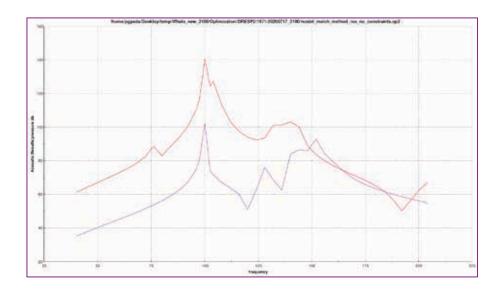


- Curve constraints
- Beta multiple minimization

421.0.4

Bound Formulation

Maximize the N-th natural frequency

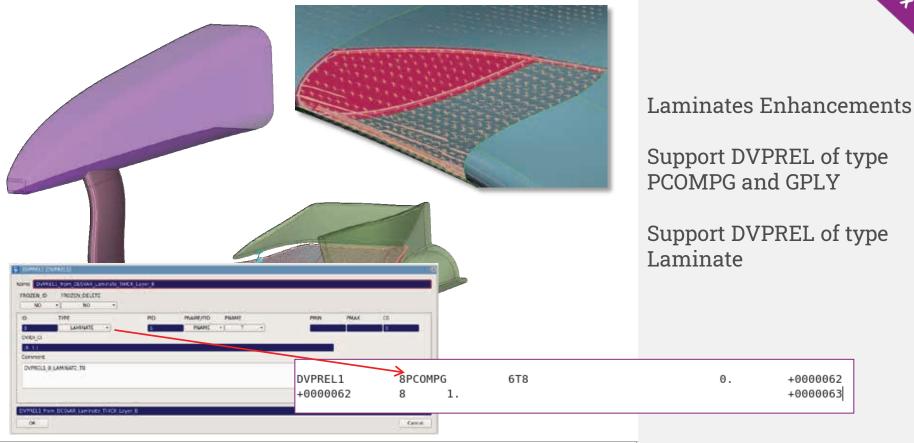

Maximize the gap between 2 consecutive natural frequencies.

Parameters:

- BETAEIG
- BETAGAP

421.0.4

- Least Squares
- Beta formulation
- Sum of square differences
- root of the sum of squares differences

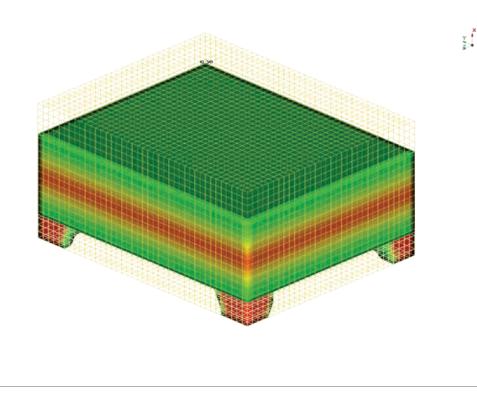


DRESP2 Enhancements Curve matching

FUNC=MATCH

Parameter:

- MATCHF, SSQ
- MATCHF, RSS



MFREQ AMLS

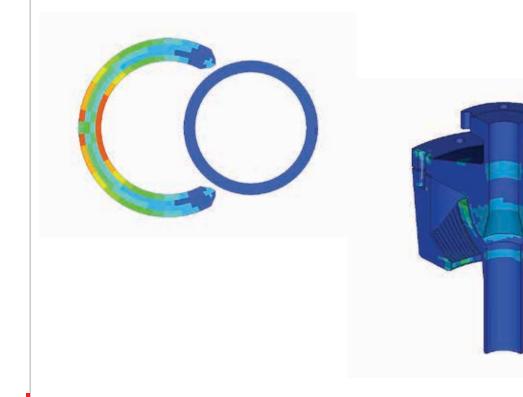
Calculation of the sensitivities in the AMLS in MFREQ analysis

122.0.+

Dual Casting Constraint for Topology Optimization

Automatically adjustable middle plane

Parameter: MIDPLANE

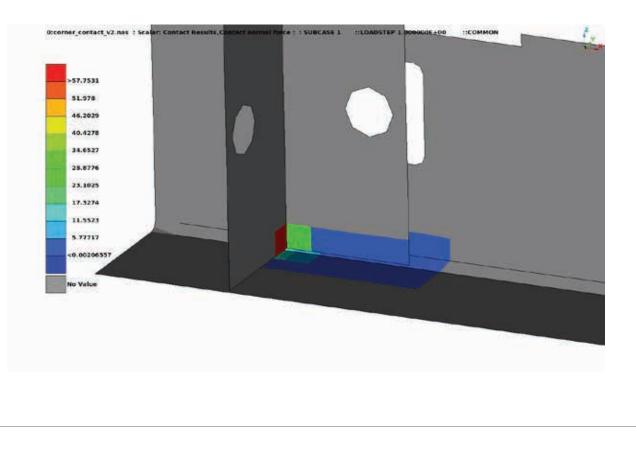

Contacts

Enhancements

Friction

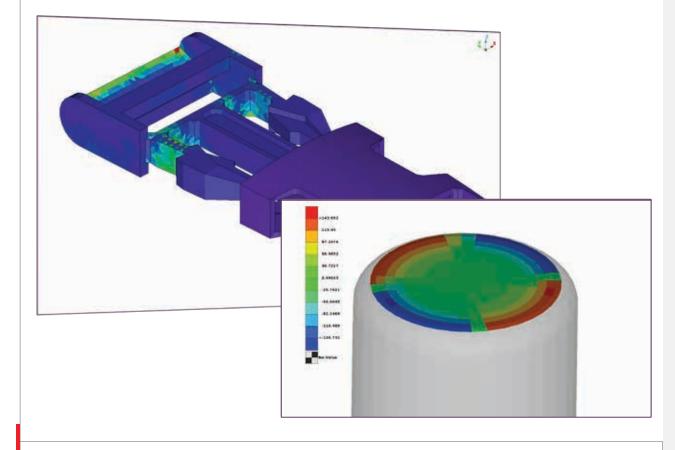
Output options

Contact Enhancements



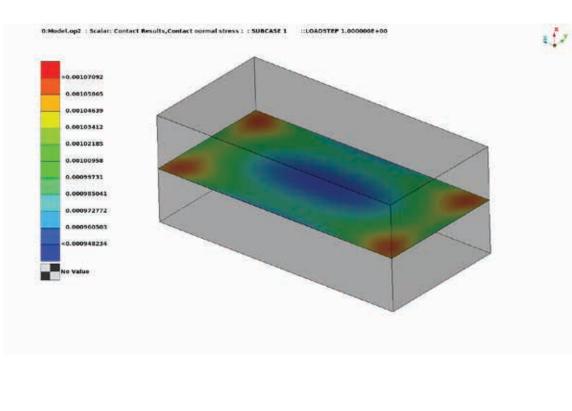
Improved:

- Contacts checking
- Penetration checking
- Slide checking


Contact detection

423.7.4

Improvement in contact detection at corner elements


Friction

128.0.+

The bilinear Coulomb friction algorithm is implemented

Convergence

Convergence due to unconstrained body models.

423.1.4

Maximum number of Separations

%5.00000E+02 1 11 4.71E+01 2.51E+04 1.04E+04 8.121 0 1 0 3.38E+07 8.994E+05 2.35E+06 5.366E+06 3109 3 1.00 0 SEPARATION condition has been detected. Additional iterations will be performed. *** USER INFO : BCONECT 2000, slave BCBODY 2501, master BCBODY 2001. Iteration 12 separation. Number of contacts : 87. \$5.00000E+02 1 12 2.80E+01 2.40E+04 8.68E+05 8.699 0 1 0 2.23E+07 8.996E+05 2.36E+06 -5.787E+06 1027 3 1.00 0 0 12 SEPARATION condition has been detected. Additional iterations will be performed. *** USER INFO : Separation checking is skipped. Maximum allowed number of iterations with separations has been reached for the current load increment. 0:EPROUVETTE.nas : Scalar: Magnitude of Displacements.Translational : : SUBCASE 1 LOADSTEP 5.000000E-0 -0.527938 0.475144 0.42235 0.369556 0.310763 0.263949 0.211375 0.158381 0.105588 0.0527938

Option MAXSEP in BCPARA

Maximum number of iterations with separation allowed for each increment.

Contact Enhancements

Support of option INTOUT in NLPARM.

Contact Enhancements		127.
	Messages re- contact error values.	5 5
<pre>*** USER INFO : BCONECT 1, slave BCBODY 1, master BCBODY 2. Contact tolerance ERROR value = 5.000e-03. Contact tolerance BIAS value = 9.000e-01. Biased contact tolerance on the outside of the elements surface = 5.000e-04. Biased contact tolerance on the inside of the elements surface = 9.500e-03. *** USER INFO : BCONECT 1, slave BCBODY 1, master BCBODY 2. The search order is from BCBODY 1 to BCBODY 2. *** USER INFO : Finite element model generated 1350 degrees of freedom. *** USER INFO : AUTOSPC is active. 360 degrees of freedom were identified as stiffness singularities. automatically constrained with single point constraints.</pre>	These dofs were	
	Messages re detected con	5 5
N O N - L I N E A R I T E R A T I O N M O D U L E O U T P U T LOAD NO ERROR FACTORS CONV ITR MAT NO. AVG TOTL DISP - STEP INC ITR DISP LOAD WORK RATE DIV DIV BIS R_FORCE WORK AVG MAX *** USER INFO : BCONECT 1, slave BCBODY 1, master BCBODY 2. Iteration 1 initial. Number of *** USER INFO : BCONECT 1, slave BCBODY 1, master BCBODY 2. Iteration 1 penetration. Number of *1.00000E-01 1 11.00E+00 2.56E+01 2.56E+01 1.000 0 1 0 7.35E-07 7.689E-07 1.45E-03 -6.233E-02		

Cost		Cost					
	Number of CPUs	SOL: 101,103,108,109,110,111,112,200,400					
	0	0		0			
No extra licensing cost		No extra cost for AMLS & FastFR		No extra learning cost			

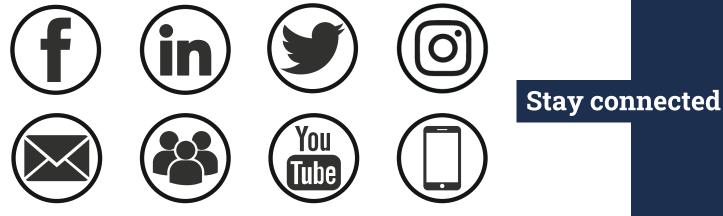
Not CPU-dependent

All features are included by default and use same credits

No extra licensing cost


No extra cost for AMLS & FastFR

No training & learning cost in cases where Nastranbased solvers are already being used



EPILYSIS constitutes an attractive, efficient and cost effective choice

..... the right choice

