ANSA Plugin of Virtual Strain Gauge Utilities for FEMFAT

June 2023

¹Minoru Nakano ²Kazumasa Kato

¹BETA CAE Systems Japan Inc. ²MAGNA INTERNATIONAL JAPAN INC.

B

BE

MAGNA

www.beta-cae.com

ANSA Plugin of Virtual Strain Gauge Utilities for FEMFAT

- Overview of Multidisciplinary Fatigue Analysis by FEMFAT
- Development of the plugin How it started?
- \cdot The functionalities of the plugin
- \cdot Use case
- \cdot Conclusions

ANSA Plugin of Virtual Strain Gauge Utilities for FEMFAT

- Overview of Multidisciplinary Fatigue Analysis by FEMFAT
- Development of the plugin How it started?
- \cdot The functionalities of the plugin
- \cdot Use case
- Conclusions

Multidisciplinary Fatigue Analysis FEMFAT

Comprehensive modules solve any tasks

FINITE ELEMENT METHOD FATIGUE

By Magna Powertrain Engineering Center Steyr GmbH & Co KG

FEMFAT (Finite Element Method FATigue)

Multidisciplinary Fatigue Analysis – comprehensive modules solve any tasks

Benefits

- Fatigue life, damage, and safety factors for all types of loading
- Compatible to all common FE-codes
- More than 500 material datasets and Material Generator
- Full choice of influence parameters on fatigue analysis
- Integration into automatic optimization
 workflows
- Combines engineering know how and standards
- Open SPOT and WELD database

Applications

- Unique & patented multi-axial fatigue hypotheses
- Multi-axial fatigue analysis of stochastically excited systems in the frequency domain
- Analysis of metals, composites, rubber and fiber reinforced plastics
- Assessment of point connections (SPOT welds, rivets, FDS...) and line connections (seam welds, adhesive bonding)

The exclusive analysis of stress in a traditional way doesn't often reveal damage occurrence at the right point

Only modern fatigue analysis tools are capable of predicting critical crack locations and the number of load cycles until failure

June 2023 / FEMFAT Support

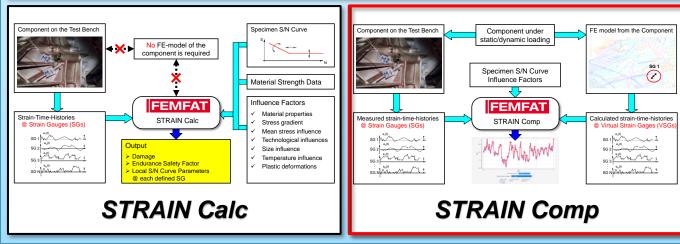
Depending on the stress state, joining technique or analysis target different FEMFAT modules are used for analysis

FEMFAT modules

June 2023 / FEMFAT Support

© MPT Engineering / Disclosure or duplication without consent is prohibited

Depending on the stress state, joining technique or analysis target different FEMFAT modules are used for analysis

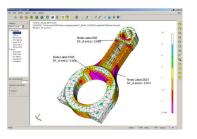

FEMFAT strain is an extension module for processing fatigue strength analysis using time history data from strain gages attached to components, and for checking the correlation between measured and calculated stress and strain.

STRAIN Calc:

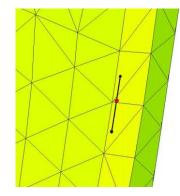
Processing measured strains directly without FE model for durability and strength analyses

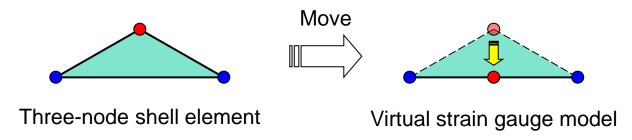
STRAIN Comp:

Checking the correlation between measured and calculated stresses and strains using virtual strain gages at FE model

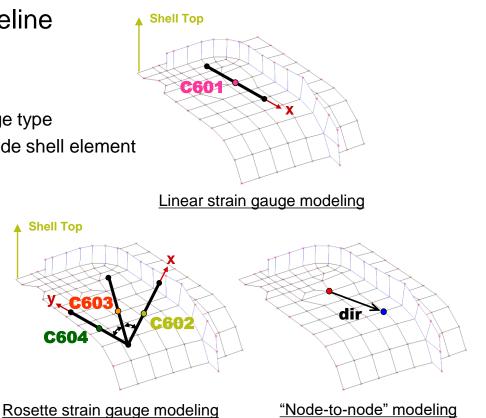


FEMFAT strain




Virtual Strain Gauge model (1/2)

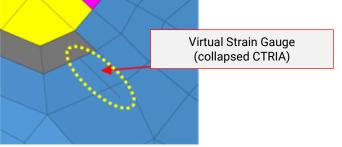
Definition


- Measurement Grid Node
- Direction grid Node

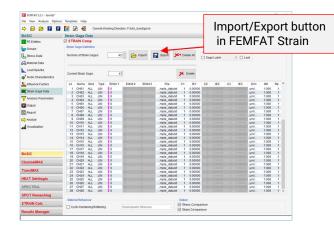
Virtual Strain Gauge model (2/2)

- Virtual Strain Gauge: Modeling guideline
 - Predefined triangular model
 - Using three-node linear shell element
 - Node color (CID) is defined according to gauge type
 - Material label (MAT ID) is defined for three-node shell element
 - Attribute-free triangular model
 - Using three-node linear shell element
 - Strain gauge is defined by GUI using EIDs
 - Node to Node
 - Two nodes of NID is defined by GUI

ANSA Plugin of Virtual Strain Gauge Utilities for FEMFAT

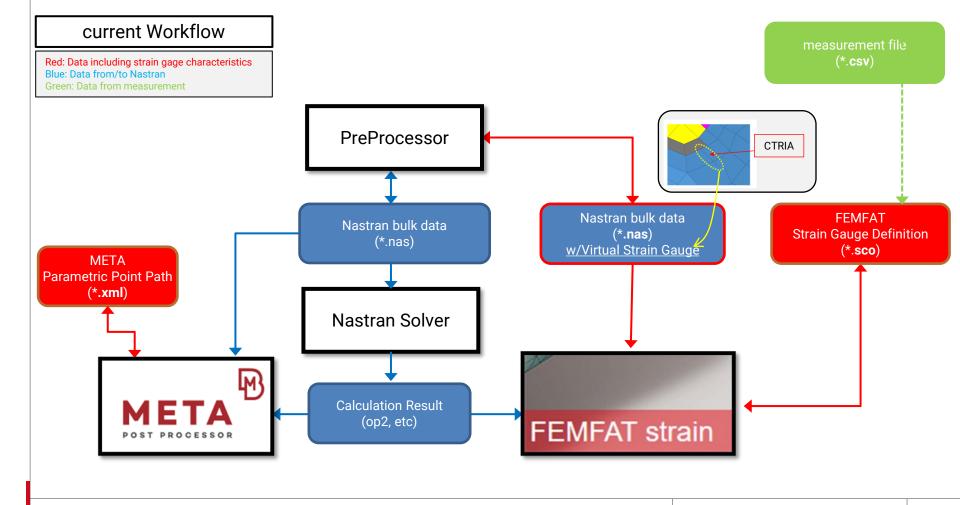

- Overview of Multidisciplinary Fatigue Analysis by FEMFAT
- Development of the plugin How it started?
- \cdot The functionalities of the plugin
- \cdot Use case
- Conclusions

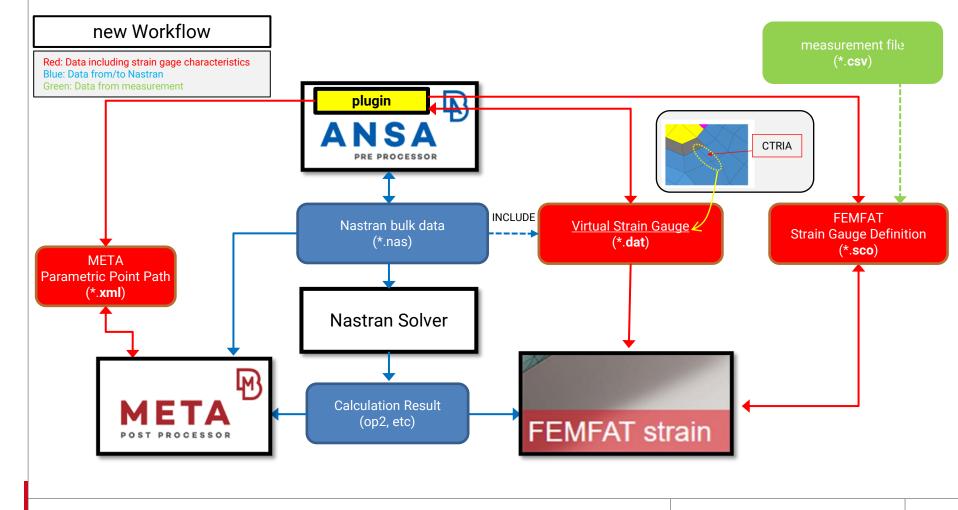
Development of the plugin - How it started?


< Current issue raised by TOYOTA >

<u>Creation/Handling of Virtual Strain Gauges for FEMFAT Strain is COMBERSOME!</u>

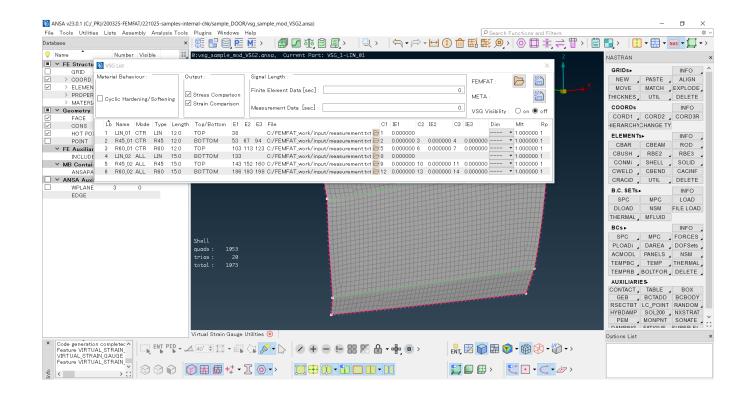
- · Not easy to create/handle "collapsed CTRIA"...
- Specific ID/Coord/Material settings...
- Relevant inputs required after imported to FEMFAT Strain...




- Gauge definition is NOT compatible with FEMFAT Strain...
- It should be made in pre-processors...

<What is expected>

Enable ANSA to create/handle Virtual Strain Gauges, available for FEMFAT, also for META!



ANSA Plugin of Virtural Strain Gauge Utilities for FEMFAT

- Overview of Multidisciplinary Fatigue Analysis by FEMFAT
- Development of the plugin How it started?
- \cdot The functionalities of the plugin
- \cdot Use case
- Conclusions

Launch the plugin

GUI of the plugin

SG List		×
Material Behaviour : Output :	Signal Length :	FEMFAT : 🛅 👹
Material Behaviour : Output : Signal Length : Cyclic Hardening/Softening Stress Comparison Finite Element Data [sec] : Strain Comparison Stress Comparison Measurement Data [sec] : Lb Name Mode Type Length Top/Bottom E1 E2 E3 File C1 IE1 C 1 LIN_01 CTR LIN 12.0 TOP 38 C:/FEMFAT_work/input/measurement.txt 1 0.000000 2 R45_01 CTR R45 12.0 BOTTOM 53 67 94 C:/FEMFAT_work/input/measurement.txt 2 0.000000 3 R60_01 CTR R60 12.0 TOP 103 113 123 C:/FEMFAT_work/input/measurement.txt 5 0.000000 4 LIN_02 ALL LIN 15.0 BOTTOM 133 C:/FEMFAT_work/input/measurement.txt 9 0.000000 5 R45_02 ALL R45 15.0 TOP 143 152 160 C:/FEMFAT_work/input/measurement.txt 9 0.000000	Finite Element Data [sec] : 0.	META :
	Measurement Data [sec] : 0.	VSG Visibility : 🔿 on 🖲 off
Lb Name Mode Type Length Top/Bottom E1	E2 E3 File C1 IE1 C2 IE2 C3 IE	3 Dim Mlt Rp
1 LIN_01 CTR LIN 12.0 TOP 38	C:/FEMFAT_work/input/measurement.txt 🛅 1 0.000000	• 1.000000 1
2 R45_01 CTR R45 12.0 BOTTOM 53	67 94 C:/FEMFAT_work/input/measurement.txt 🛅 2 0.000000 3 0.000000 4 0.0	000000 • 1.000000 1
3 R60_01 CTR R60 12.0 TOP 103	3 113 123 C:/FEMFAT_work/input/measurement.txt 🛅 5 0.000000 6 0.000000 7 0.0	000000 • 1.000000 1
4 LIN_02 ALL LIN 15.0 BOTTOM 133	3 C:/FEMFAT_work/input/measurement.txt 🛅 8 0.000000	• 1.000000 1
5 R45_02 ALL R45 15.0 TOP 143	3 152 160 C:/FEMFAT_work/input/measurement.txt 🛅 9 👘 0.000000 10 0.000000 11 0.0	000000 • 1.000000 1
6 R60_02 ALL R60 15.0 BOTTOM 186	6 193 198 C:/FEMFAT_work/input/measurement.txt 🛅 12 0.000000 13 0.000000 14 0.0	000000 ▼ 1.000000 1

\bigcirc Common Settings

Material Behaviour, Output, Signal Length

 \bigcirc Strain Gauge List View

- \cdot Creation and list up of gauges
- edit settings (measurement file, etc)

◇FEMFAT File Input/Output

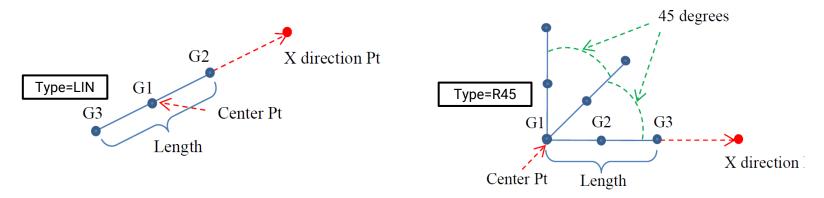
- [Output] •••• VSG Model File (*.dat) , Definition File (*.sco)
- [Input] •••• VSG Model File (*.dat)

◇META File Output

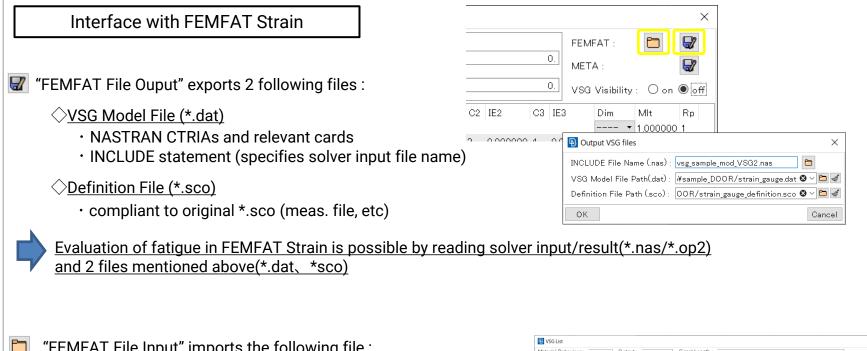
Parametric Point Path File (*.xml)

♦ VSG Visibility

visualize gauges defined on current model


Creation of Virtual Strain Gauges

- RMB>Add Gauge on the list view
- Input/select each field (Lb, Name, Length, Mode, Type, Top/Bottom)
- specify Center Pt on the model
- confirm Normal Vec. preview (invert/arbitrary direction is also available)
- specify X direction Pt
- confirm Virtual Strain Gauge preview
- press Create/OK button


0:vsg_sample_mod_VSG2.ansa, Cu	rrent Part: points_org			
VSG List				×
Material Behaviour :	Output :	Signal Length : Finite Element Data [sec] : 0	FEMFAT :	
Cyclic Hardening/Softening	Strain Comparison	Messurement Data [sec] : 0		on 🖲 off
Lb Name Mode Type Let	ngth Top/Bottom E1 E	E3 File C1 IE1 C2 IE2 C3 IE3 Dim Mit Rp		
Strain Gauge Positions Center Pt : -875.41900, Normal Vec : 453,-0.99873 X direction Pt : -875.61479,	9,-0.04693 😫 🏢			
	reate	<u>Cancel</u>		

Definition of Virtual Strain Gauge

- Nastran CTRIA is created according to the input.
- In case of Type=R45/R60, 3 CTRIAs are aligned to counter-clockwise around Normal Vec.
- CD is set for the node lying at the middle of each CTRIA.

Туре	GRID	TOP/BOTTOM	CORD_R ID
LIN	G1	TOP	601
LIN	G1	BOTTOM	701
D45 D60	G2	TOP	602, 603, 604
R45, R60	G2	BOTTOM	702, 703, 704

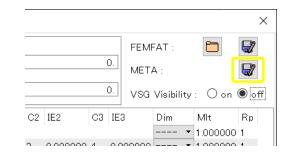
- "FEMFAT File Input" imports the following file :
 - \bigcirc <u>VSG Model File (*.dat)</u>

<u>Strain Gauges can be imported and applied to another model</u> <u>through VSG Model File (*.dat)</u>

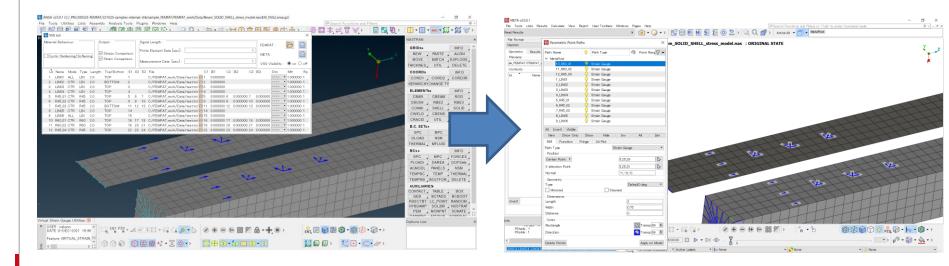
							_													
Material Behaviour : Output :					Signal Length :									FEME	FEMFAT :			(1)		
						Finite Element Data [sec] : 0.								META	_					
					Strain Compar	ison		Meas	urement Data [sec] :		_		_		0	VSG \	/isibility		O on (0 01
Ĺb	Name	Mode	Type	Length	Top/Bottom	E1	E2	E3	File		C1	IE1	C2	IE2	C3	IE3	Dim		Mlt	R
1	LIN_01	CTR	LIN	12.0	TOP	38			C:/FEMFAT_work/input***		1	0.000000						٠	1.00000	01
	R45_01	CTR	R45	12.0	BOTTOM	53	67	94	C:/FEMFAT_work/input***	0	2	0.000000	3	0.000000	4	0.000000		•	1.00000	01
2		OTD	R60	12.0	TOP	103	113	123	C:/FEMFAT_work/input***	0:	5	0.000000	6	0.000000	7	0.000000		٠	1.00000	01
2	R60_01																			
3	R60_01 LIN_02		LIN	15.0	BOTTOM	133			C:/FEMFAT_work/input***	00	3	0.000000						•	1.00000	01
3 4		ALL	LIN R45	15.0 15.0	BOTTOM TOP			2 160	C:/FEMFAT_work/input*** C:/FEMFAT_work/input***			0.000000	10	0.000000	11	0.000000			1.00000	

Interface with FEMFAT Strain

Virtual Strain Gauges defined in ANSA plugin


Fatigue calculation in FEMFAT Strain

NSG List	1 010 100	C 1 0 1 0	1 1 1					\times			Gage Da						_						
Material Behaviour :	Output :	Signal Length :				FEMFAT :	E	10			age Defin												
Cyclic Hardening/Softening	☑ Stress Comparis ☑ Strain Comparis					1. META :	l	21Z			er of Strain		1.		Import	Export 🗡	Delete All	Auto Fil		0] Last		
Lb Name Mode Type Len	igth Top/Bottom			02 IE2 0	3 IE3 Di	1. VSG Visibilit m Mlt f		ott		Curren	t Strain Ga	ige:	-	1		>	C Delete						
1 LIN01 ALL LIN 2.0		1 measurement.tx				• 1.000000 1							-										
2 LIN02 CTR LIN 2.0						• 1.000000 1					Nami M			El/Nd 2	El/Nd 3	File		C1 II		2 IE2	C3 IE3	Dim	Mit
3 LINO3 CTR LIN 2.0		3 measurement.tx				• 1.000000 1					LIN01 AL			18	107	C:/FEMFAT_work/Da		1 0.0		0 0.00000	0 0.00		1.000
4 LIN04 CTR LIN 2.0		4 measurement.tx				• 1.000000 1					LIN02 CT LIN03 CT		E2 E3	0		C:/FEMFAT_work/Da C:/FEMFAT_work/Da		2 0.0	0000				1.000
5 R45 01 CTR R45 2.0				0.000000		• 1.000000 1					LIN03 CT			0		C:/FEMFAT_work/Da			0000				1.000
		5 6 7 measurement.tx									R45 C1			E 6	E7	C:/FEMFAT_work/Da			0000	6 0.00000	7 0.00	00	1.000
8 R45_02 CTR R45 2.0		8 9 10 measurement.tx		0.000000		• 1.000000 1					R45 C1			E9	E 10	C:/FEMFAT_work/Da			0000	9 0.00000			1.000
R45_03 CTR R45 2.0		11 12 13 measurement.tx		0.000000		• 1.000000 1				7	R45 C1		E 11	E 12	E 13	C:/FEMFAT_work/Da		11 0.0	0000 1	2 0.00000	13 0.00	00	1.000
LIN05 CTR LIN 2.0	TOP 1	14 measurement.tx	0.000000			• 1.000000 1			N	8	LIN05 CT		E 14	0	0	C:/FEMFAT_work/Da		14 0.0	0000		0 0.00	00	1.000
LIN06 ALL LIN 2.0	TOP	15 measurement.tx	0.000000			1.000000 1					LINO6 AL		E 15	0		C:/FEMFAT_work/Da	ta/test.txt	15 0.0	0000				1.000
0 R60 01 CTR R60 2.0		16 17 18 measurement.tx		0.000000		• 1.000000 1					R60 C1				E 18	C:/FEMFAT_work/Da					18 0.00		1.000
11 R60_02 CTR R60 2.0		19 20 21 measurement.tx		0.000000		• 1.000000 1					R60 C1			E 20	E 21	C:/FEMFAT_work/Da				0.00000			1.000
12 R45.04 CTR R45 2.0		22 23 24 measurement.tx 22 23 24 measurement.tx		0.000000		• 1.000000 1				12	R45 C1	TR R45	b 22	E 23	E 24	C:/FEMFAT_work/Da	;a/test.txt	22 0.0	0000 2	3 0.00000	24 0.00	00	1,000
											al Behavio ic Hardeni		ng	Elastoplast	ic Stresses		put tress Compa train Compa						


Interface with META

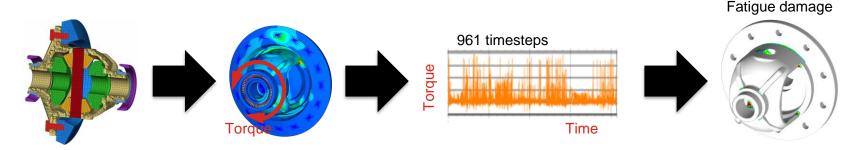
"META File Output" exports the following file:

- \bigcirc Parametric Point Path File (*.xml)
 - \cdot compatible with Strain Gauge of META

Strain Gauges defined by the plugin are available also in META

ANSA Plugin of Virtual Strain Gauge Utilities for FEMFAT

- Overview of Multidisciplinary Fatigue Analysis by FEMFAT
- Development of the plugin How it started?
- \cdot The functionalities of the plugin
- \cdot Use case
- Conclusions

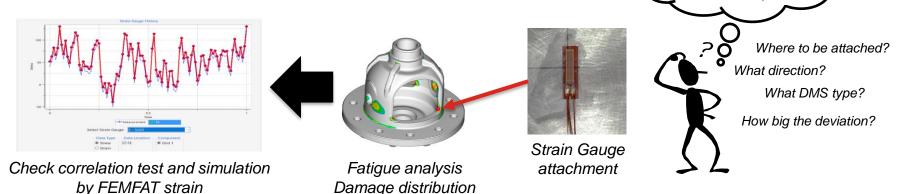

Problem definition Fatigue analysis of differential cage with variable loads Strain gauge measurement

Challenges

05 .

- 1. How to perform fatigue analysis for the differential cage with variable loads?
 - > Want to perform fatigue simulation with real vehicle condition.
 - \rightarrow There are 961 timesteps (7.96sec.) of load condition.

- 2. How big is the orientation sensitivity of strain gauge measurement?
 - ➤ Want to compare the correlation between testing and simulation.
 → What is the deviation coming from measurement?



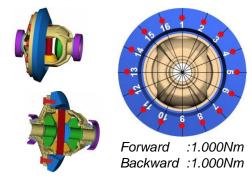
Motivation

before measurement

- 1. It is possible to detect following info from FEMFAT
 - Strain Gauge Position = "Most critical damaged node"
 - Strain Gauge Direction = "Critical Cutting Plane Vector"

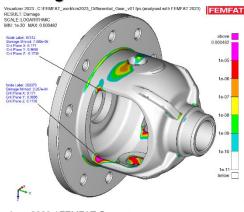
- 2. In general, the sensitivity of Strain Gauge orientation is very high!!
 - → It is essential to find the appropriate position to be attached the Strain Gauge.
 - → Measured position should be less sensitivity to the orientation.
 - → Meaningful measurement to compare with FE simulation.

Fatigue simulation procedure From FE modeling till Fatigue evaluation


Fatigue analysis procedure

Strain Gauge Definition by ANSA

Fatigue analysis by FEMFAT


FE model setup by ANSA FE analysis with unit load

Load-Time history conversion by FEMFAT LAB

Variable Torque (T(t) Nmm) 2 2. Load-Time history Х 0 0 for FEMFAT (*.txt) *.dat, *.nas 0 0 Х *.sco ,000000 ,000000 ,000000 1,000000 1,339783 0,000000 0,000000 0,000000 0,000000 Variable RPM (r(t) ... Strain Gauge Comparison *.sts, *.sps Damage $d_i = \frac{n_i}{N_i}$ Load spectrum entries A_2 , M_2 , n_2 17412, Signal - 1.91473 179 Simul 115 477 $N_1 N_2 N_3$ Load Cycles $d_{total} = \sum d_i$ $\frac{d_1}{d_1} + \frac{d_2}{d_2} + \frac{d_3}{d_3} + \dots + \frac{d_n}{d_n}$ MEAN n_2 @ each nodes

Damage distribution

Fatigue simulation results Detect strain gauge orientation → 4 positions Check sensitivity of strain gauge orientation

Detect evaluation positions

One of the max. stress at time point Detect strain gauge measurement position Stress distribution at time point 59 Four positions from damage distribution Visualizer 2023 - C:\FEMFAT work\cm2023 Differential Gear v01.fps (analysed with FEMFAT 2023) FEMFAT Visualizer 2023 - C:\FEMFAT work\cm2023 Differential Gear v01.fps (analysed with FEMFAT 2023) FEMFAT STRESS (ChannelMAX): VON MISES - Shell: TOP - Solid: SURFACE **RESULT: Damage** SCALE: LINEAR SCALE: LOGARITHMIC MIN: 0 MAX: 1.01e+03 MIN: 1e-30 MAX: 0.000482 TIMESTEP: 59 / 961 above Pos4: N222513 above 250 -0.000482 Pos4 Damage: 2.264e-6 (0.5%) Pos₂ 225 -Pos2: N248190 1e-05 Damage: 1.973e-5 (4.1%) 200 1e-06 Pos3: N292765 View A 175 1e-07 Damage: 5.433e-7 (0.1%) View A 150 -1e-08 Pos1 1e-09 -125 -Pos3 1e-10 · 100 1e-11-75 below below Pos1: N87893 Damage: 4.821e-4 (100%)

→ Four positions were extracted from stress and damage distribution.

Pos1: 100% of most critical damage at N87893

FEMFAT

above

0.00048

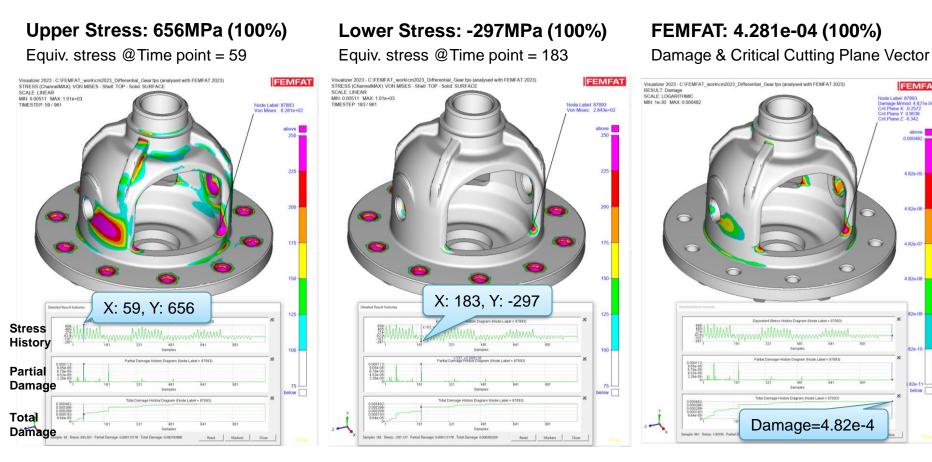
4.82e-05

4.820-06

4.82e-07

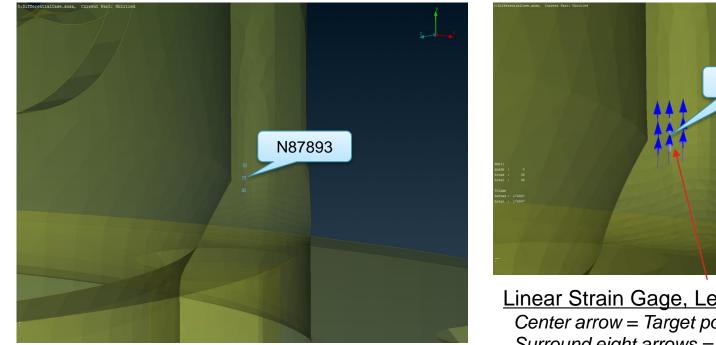
4 829-08

820.11


below

Node Label: 87893

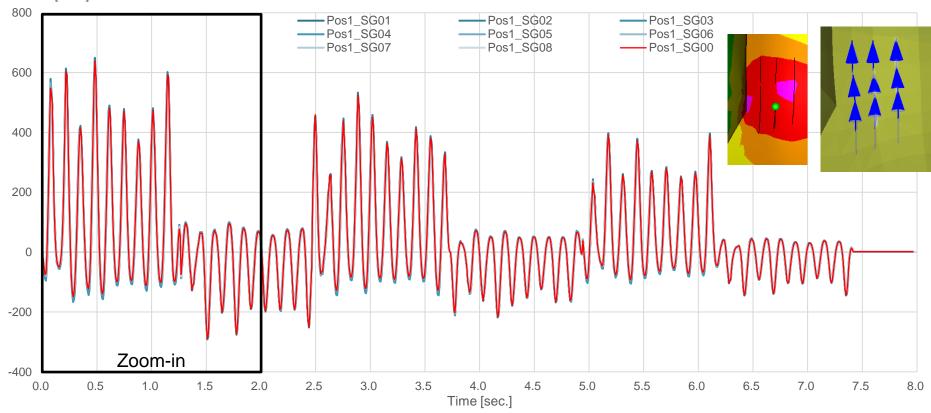
Crit Plane X: -0.2572


Crit Plane Y: 0.9038 Crit Plane Z: -0.342

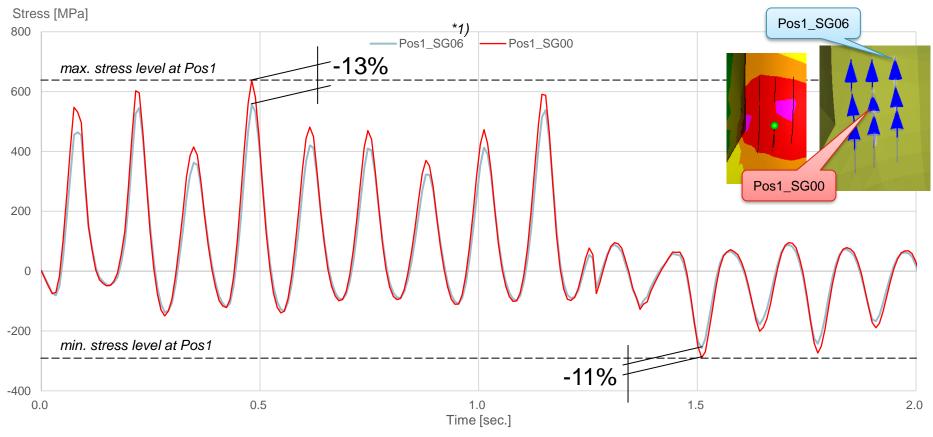
Damage M/mod: 4.821e-04

Pos1: Suggested strain gauge orientation by FEMFAT **MAGNA**

N87893 position and Critical Cutting Plane Vector & 9-gauge positions



Linear Strain Gage, Length=1.52mm Center arrow = Target position (white highlight) Surround eight arrows = Check sensitivity Gauge tolerance = $\pm/-0.6mm$

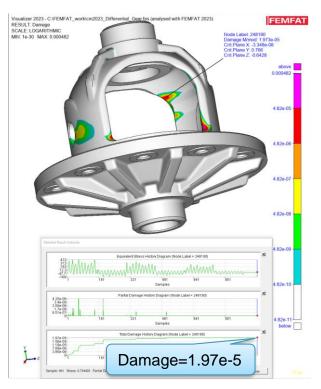

Pos1: Sensitivity of strain gauge position / overall

Stress [MPa]

Pos1: Sensitivity of strain gauge position / zoom-in

*1) It was compared the negative deviation of strain gauge position from Pos1_SG00.

MAGNA


Pos2: 4.1% of most critical damage at N248190

Upper Stress: 432MPa (65.9%) Equiv. stress @Time point = 59

Visualizer 2023 - C:\FEMFAT_work\cm2023_Differential_Gear.fps (analysed with FEMFAT 2023) Visualizer 2023 - C:\FEMFAT_work\cm2023_Differential_Gear.fps (analysed with FEMFAT 2023 FEMFAT EMFAT STRESS (ChannelMAX): VON MISES - Shell 10 STRESS (ChannelMAX): VON MISES - Shell Tell SCALE LINEAR SCALE LINEAR Node Label: 248190 Node Label: 248190 MIN: 0.00511 MAX: 1.01e+03 MIN: 0.00511 MAX: 1.01e+03 Von Mises: 4 054e+0 Von Mises: 1.573e+02 TIMESTEP: 183 / 961 TIMESTEP: 59 / 961 X: 183, Y: -168 X: 59, Y: 432 125 ram (Node Label + 24819) Stress History Partial Damane History Diagram (Node Label = 24019) Diagram (Node Label = 248190 Partial Damage 75 below Total Damage History Diagram (Node Labelei 242:2044e-05 Total Damage Mintery Diagram (Mode) shate631979340-0 Total Damage est 432.305 Partial Damane A.25482e-05 Total Damane 9.06509e-08

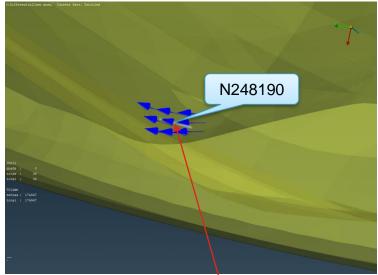
FEMFAT: 1.973e-05 (4.1%) Damage & Critical Cutting Plane Vector

125

10

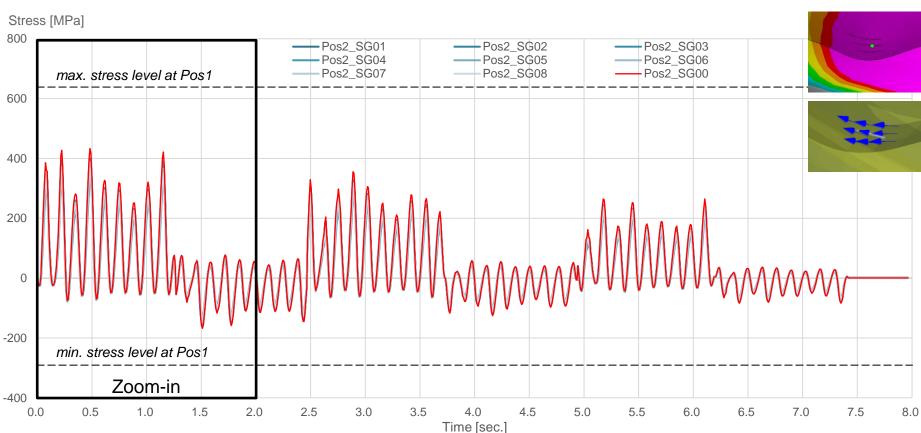
75

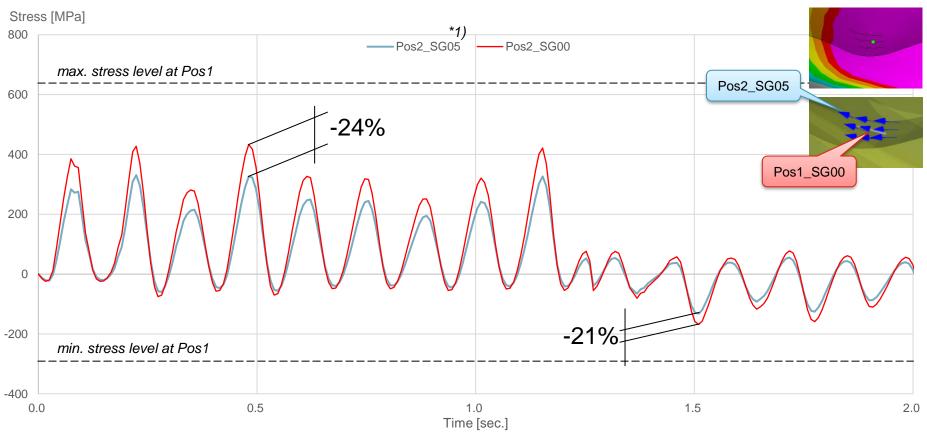
below


Lower Stress: -168MPa (56.6%)

Equiv. stress @Time point = 183

Pos2: Suggested strain gauge orientation by FEMFAT

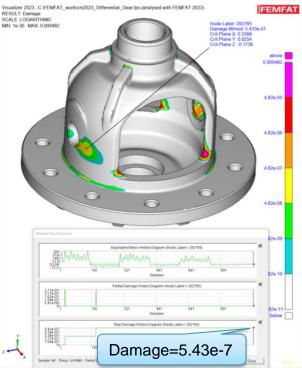

• N248190 position and Critical Cutting Plane Vector & 9-gauge positions



<u>Linear Strain Gage, Length=1.52mm</u> Center arrow = Target position (white highlight) Surround eight arrows = Check sensitivity Gauge tolerance = +/-0.8mm

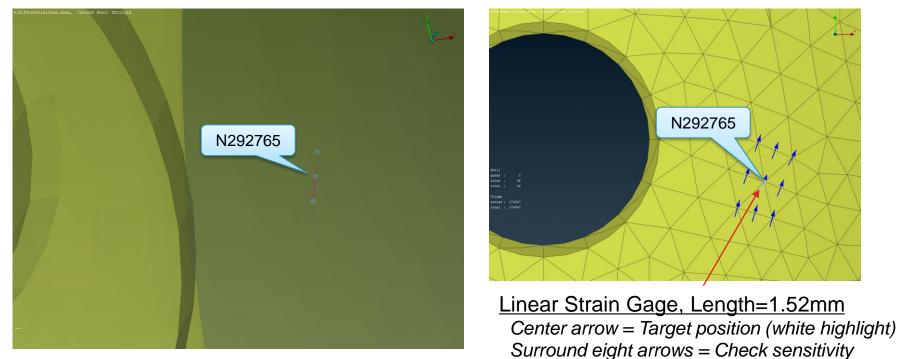
Pos2: Sensitivity of strain gauge position / overall

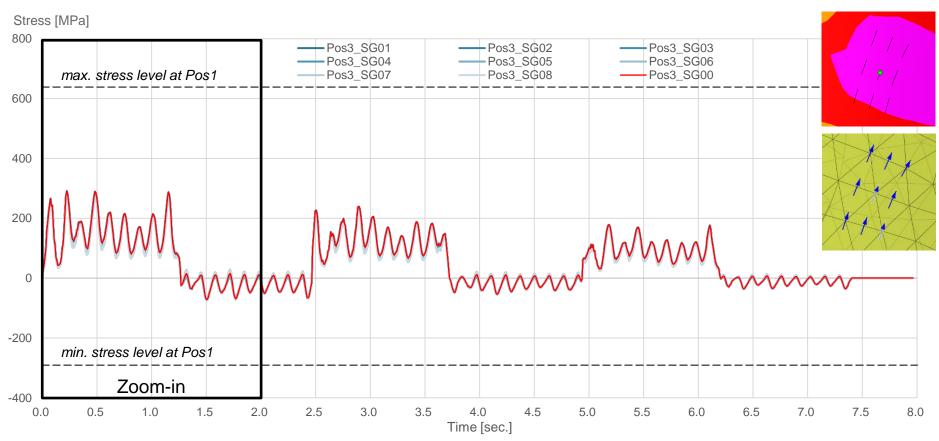
Pos2: Sensitivity of strain gauge position / zoom-in


*1) It was compared the negative deviation of strain gauge position from Pos2_SG00.

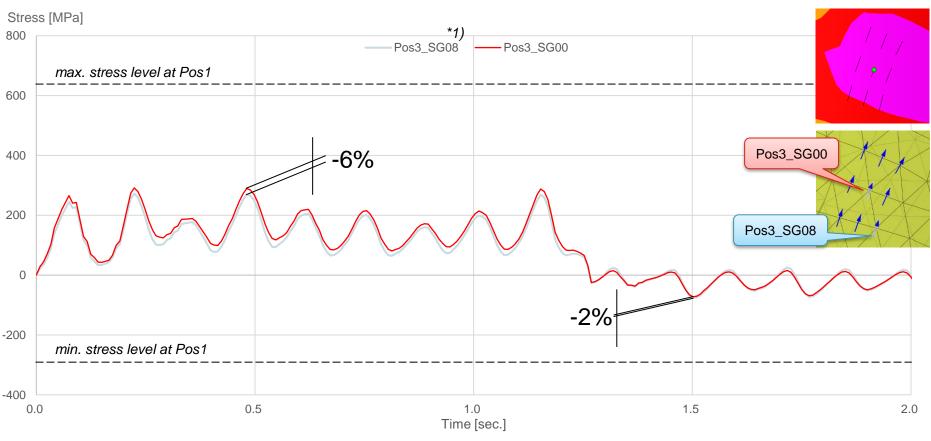
Pos3: 0.1% of most critical damage at N292765

Upper Stress: 291MPa (44.3%) Lower Stress: -72MPa (24.2%) Max. VM stress @Time point = 28 Min. VM stress @Time point = 182 /isualizer 2023 - C1FEMFAT_work\cm2023_Differential_Gear.fps (analysed with FEMFAT 2023) Visualizer 2023 - C1FEMFAT_work1cm2023_Differential_Gear.fps (analysed with FEMFAT 2023) FEMFAT FEMFAT STRESS (ChannelMAX): VON MISES - Shell: TOP - Solid: SURFACE STRESS (ChannelMAX): VON MISES - Shell: TOP - Solid: SURFACE SCALE: LINEAR SCALE LINEAR Node Label: 292765 Node Label: 292765 MIN: 0.00511 MAX: 1.01e+03 MIN: 0.00511 MAX: 1.01e+03 Von Mises: 6.904e+01 Von Mises: 2607e+02 TIMESTEP: 182/961 TIMESTEP: 28 / 961 X: 182, Y: -72 X: 28, Y: 291 125 125 Stress History 100 100 Partial Damage History Diagram (Node Label = 292765 Partial Damage History Diamam (Node Lakel + 292765) Partial Damage 75-Total Damage History Diagram (Node Label = 292765) Istal Damage History Diagram (Node Label = 292765 Total Damage evolar 187 Street, 77 1876 Partial Damage 2 70717a,07 Total Damager 5,41467a,01 Reset tress: 291.418 Partial Damage: 2.70717e-07 Total Damage: 2.70743e-0 Reset Markers


FEMFAT: 5.433e-07 (0.1%) Damage & Critical Cutting Plane Vector


June 2023 / FEMFAT Support

Pos3: Suggested strain gauge orientation by FEMFAT


• N292765 position and Critical Cutting Plane Vector & 9-gauge positions

Pos3: Sensitivity of strain gauge position / overall

Pos3: Sensitivity of strain gauge position / zoom-in

*1) It was compared the negative deviation of strain gauge position from Pos3_SG00.

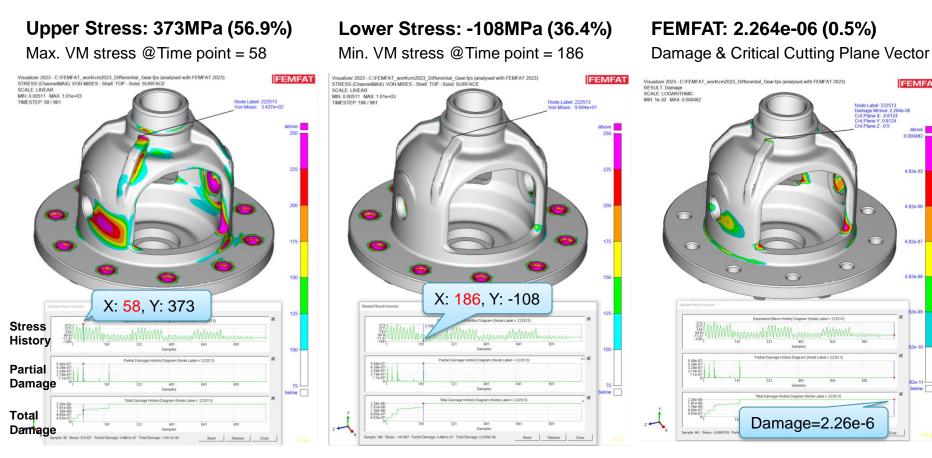
Pos4: 0.5% of most critical damage at N222513

Node Label: 222513

Damage M/mod: 2.264e-06 Crit.Plane X: -0.6124 Crit Plane Y: 0.6124 Crit Plane Z: -0.5

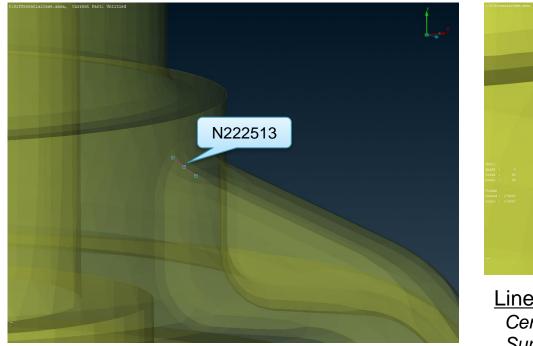
FEMFAT

above 0 000482


4.82e-05

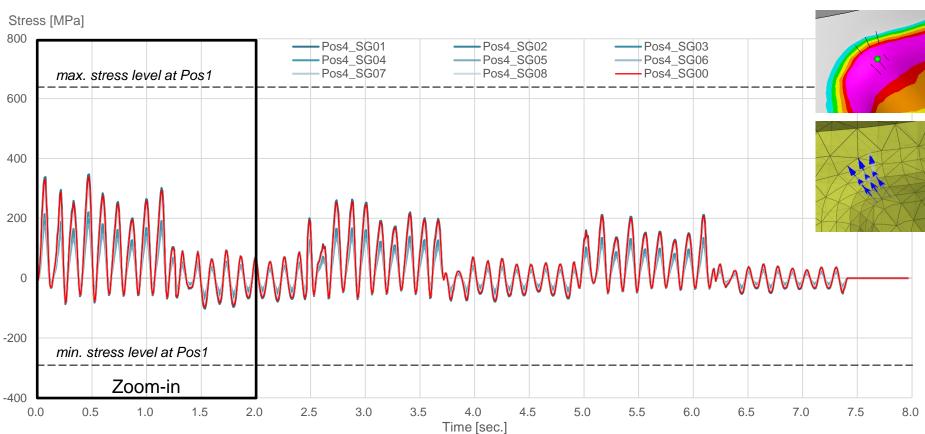
4.82e-06

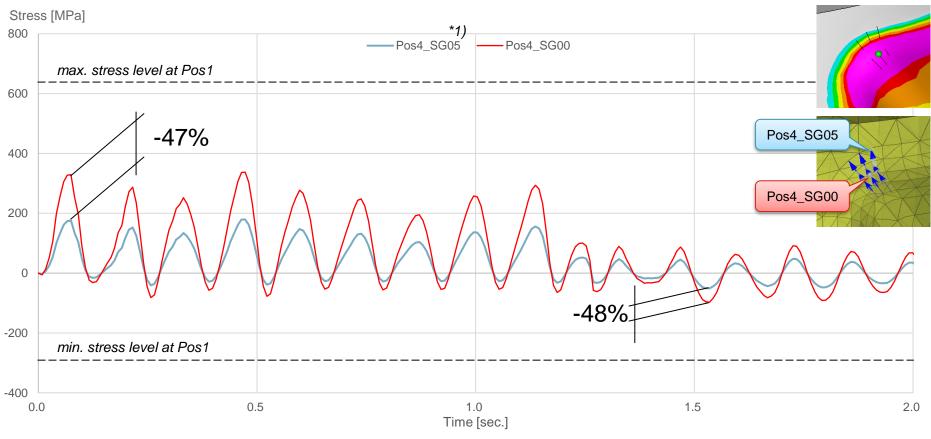
4.82e-07


4.82e-08

2e-0

Pos4: Suggested strain gauge orientation by FEMFAT

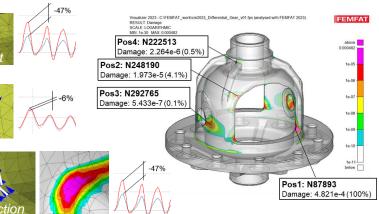

N22513 position and Critical Cutting Plane Vector & 9-gauge positions



Linear Strain Gage, Length=1.52mm Center arrow = Target position (white highlight) Surround eight arrows = Check sensitivity Gauge tolerance = +/-0.5mm

Pos4: Sensitivity of strain gauge position / overall

Pos4: Sensitivity of strain gauge position / zoom-in


*1) It was compared the negative deviation of strain gauge position from Pos4_SG00.

Summary

- When it is small radii with stress concentration area, the measured stress deviation can be high. (Pos4, ~50%)
- When it is flat area with homogeneous stress distribution, the measured stress deviation can be low. (Pos3, ~5%)
- It is not only the offset of the position (~0.5mm), but also the orientation of the direction, it is possible to have massive deviation in the stress history. (Pos4)

Position	Damage	Measured Stress (Target position)	Deviation (tolerance)	Remark
Pos1	4.821e-4 (100%)	637 / -289 MPa	-13% / -11% (+/-0.6mm)	Convex shape with small radii Equivalent fillet $R \cong 5.1$
Pos2	1.973e-5 (4.1%)	433 / -168 MPa	-24% / -21% (+/-0.8mm)	Concave shape with small radii Equivalent fillet $R \cong 5.2$
Pos3	5.433e-7 (0.1%)	292 / -72 MPa	-6% / -2% (+/-3.0mm)	Flatter shape with large radii Equivalent fillet $R \cong 15.0$
Pos4	2.264e-6 (0.5%)	338 / -97 MPa	-47% / -48% (+/-0.5mm)	Concave shape with small radii Equivalent fillet $R \cong 3.0$

ANSA Plugin of Virtual Strain Gauge Utilities for FEMFAT

- Overview of Multidisciplinary Fatigue Analysis by FEMFAT
- Development of the plugin How it started?
- \cdot Overview of the functionalities of the plugin
- Use case
- \cdot Conclusions

Conclusions

• ANSA-plugin and FEMFAT strain are possible to examine where is the best position (less sensitivity, meaningful position) to be attached the strain gauge before physical tests.

• It is easy to locate virtual strain gauge by ANSA, and it is easy to prepare the necessary input data for FEMFAT strain.

• The definition of virtual strain gauge is possible to be used for META, too.

NOTICE: This plugin requires a license feature, different from ANSA/META(pre-post package). Please contact us for details via:

- Our web site : https://beta-cae.jp/index.html
- Technical support : support@beta-cae.jp