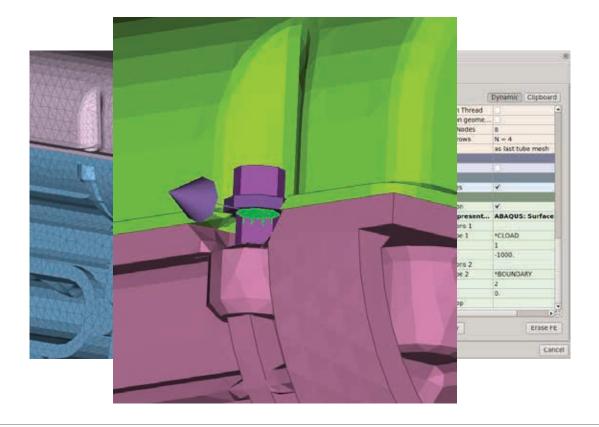
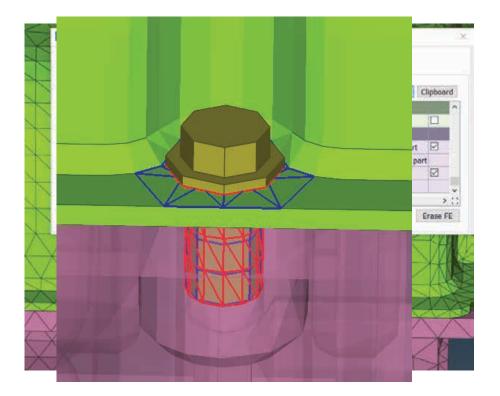


Latest & future developments for Durability analysis and for analysis of structures made of Composites

physics on screen

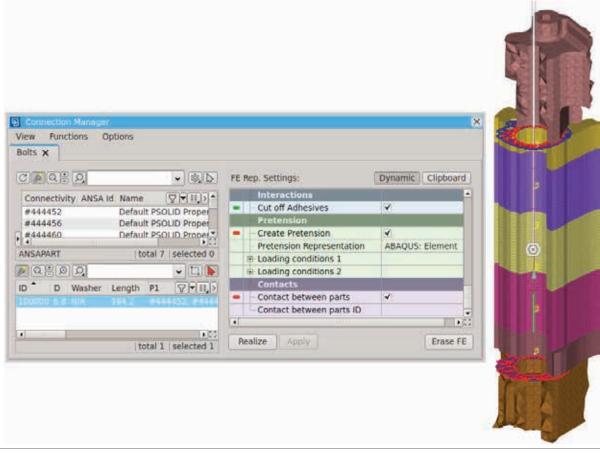


Assembly


Bolt Connections

Pretension through SOLID BOLT FE representation

- Automatic generation of Pretension parametrically to the Solid Bolt thread length
- Appropriate steps and loading conditions
- Compliant with numerous solvers

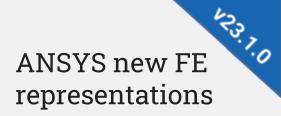

Bolt Connections

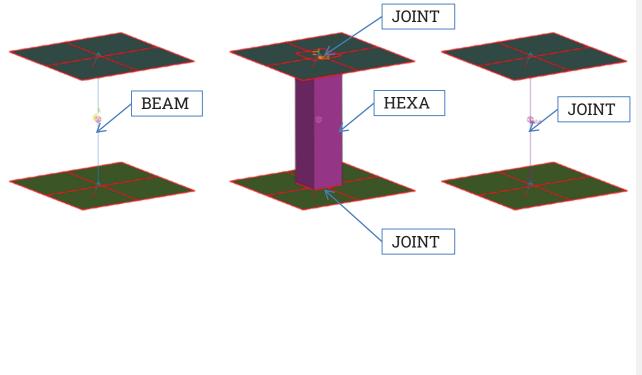
Contacts through SOLID BOLT FE Representation

- Contact between head and top part
- Contact between head and thread
- Tied contact between thread and last part
- Available for Abaqus, Ansys, Nastran

Bolt Connections

Pretension and Contacts for BOLT ON SOLID – FE Representation


Pretension on beams


Appropriate Steps and loading conditions

Contacts between connectivity parts

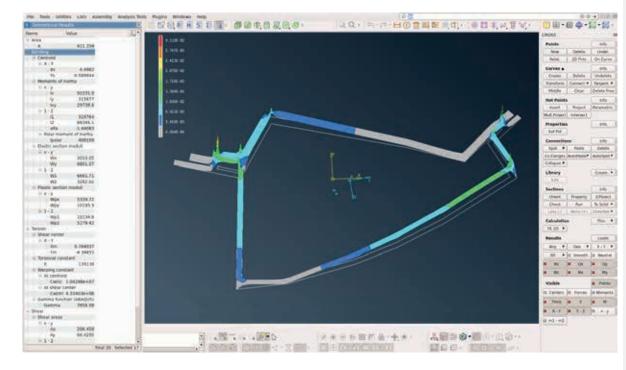
Supported for Abaqus, Ansys, Nastran NX and Pam-Crash

Spotweld Connections

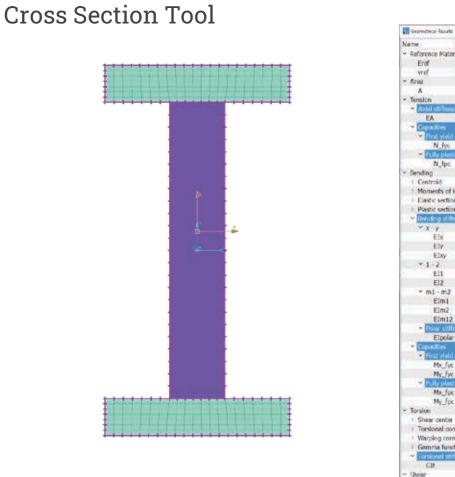
- ANSYS BEAM contact
- ANSYS HEXA contact
- > ANSYS JOINT contact

Contact Interfaces

Sulf-la Erelline
Nices Dation
Selection X
Hame M Add Germatility (9 + 3)) * Shart_10_T+4mm to Fart_20_T+3mm 1 - Coolact s 4 Slave Set ** (Part_10_T+4mm to Fart_20_T+3mm 1_1 1 S235() ** (Part_10_T+4mm to Fart_20_T+3mm 1_2 3 S235() ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
tela(2)
iets Doend Shrink Acazons Modily File
Meuslize Contact surfaces distance.
Previous Next Close


Node to Surface contacts through Contact Assistant

- Automatic detection based on proximity
- Flipping Surfaces
- Inspection of surfaces contents

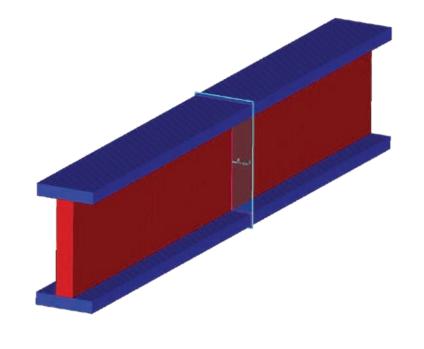

Cross sections

Cross Section Tool

کېږې New Cross Sections Solver – FE 2D

 Cross sectional properties of thin and solid sections calculated with FE 2D analysis

開め Value. · Reference Material Eref 70000 weel 0.33 168 - ENGINE EA: 1.176e+07 11880 N_fyc 26450 N_tpc Centroid Moments of inertia Elastic section moduli Plastic section moduli Y X Y Elx 7.548884+08 7.752014+07 Ely 0.0122156 Elxy × 1 - 2 E11 7.548886+08 EIZ 7.25201e+07 * m1 - m2 EIm1 Elm2 Elm12 Elpolar 8.27406++08 Mx fvc 181950 My_fx 37986.7 Ma Jpc 223920 My for 10789 1 Shear center Torsional constant Warping constant Gemma function (ABAQUS) 8.54085++06 Glt

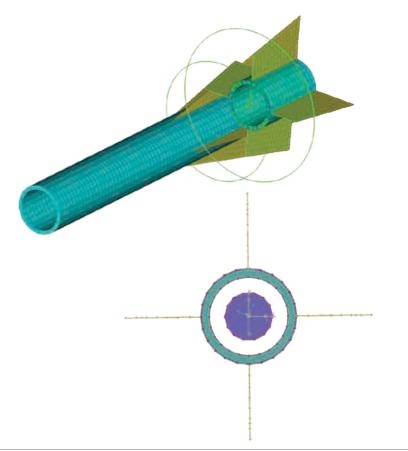

- 20

Cross Section Results

- First Yield capacities N_fyc, Mx_fyc, My_fyc
- Fully Plastic capacities N_fpc, Mx_fpc, My_fpc

423.1.0

Cross Section Tool

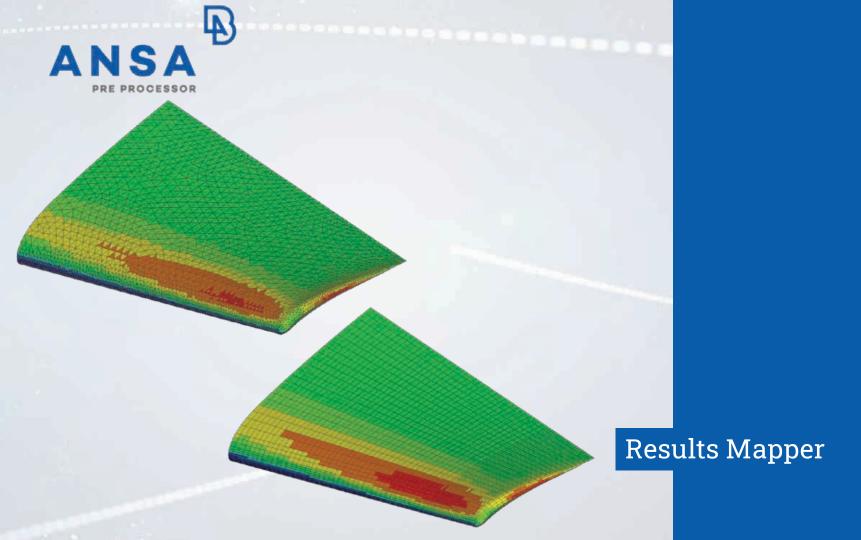


Geometrical I	ies da	N
Name	Value 📃	6
- Reference Mal	terial	
Eref	70000	
wef	0.93	
Area		
A	168	
Bending		
Centroid		
R X - Y		
Xs	356373e-15	
Ys	1.00577e-14	
Moments o	l irertia	
= x - y		
-DK	11106.4	
NY.	1504.91	
lay	5.73119	
= 1 - 2		
13	11106.4	
12	1504.91	
olfa	0.000596907	
- Pular m	oment of Inertia	
Ipola	12011.3	
	ion moduli	
= x - y		
Wx	1110.64	
Wy	300.982	
= 1-2		
WI	1110.64	
W2	300,981	
- Plastic sect	iluborn not	H
= x - y	8-14-15-24-24	
Wpx	1208	
Wpy	318	
= 1 - 2		
Wp1	1208	
Wp2	318	
Torsion		
Shear cent		
= X - T	57	
Xm	5.01614e-10	
Ym	980116e-09	
Torsional ci		
tt	670.716	
	010.710	

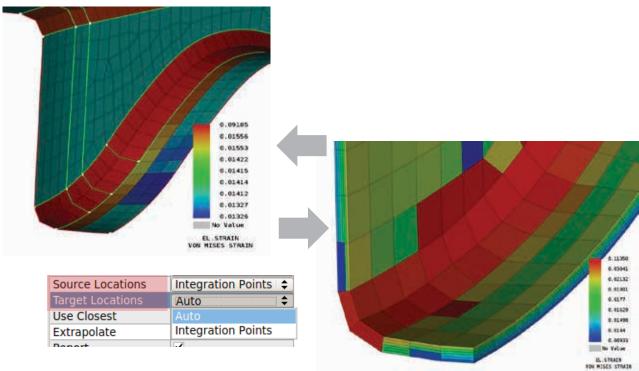
Calculation of Non Homogeneous Solid Cross Sections

Supported in FE & FE 2D cross solvers

Cross Section Tool

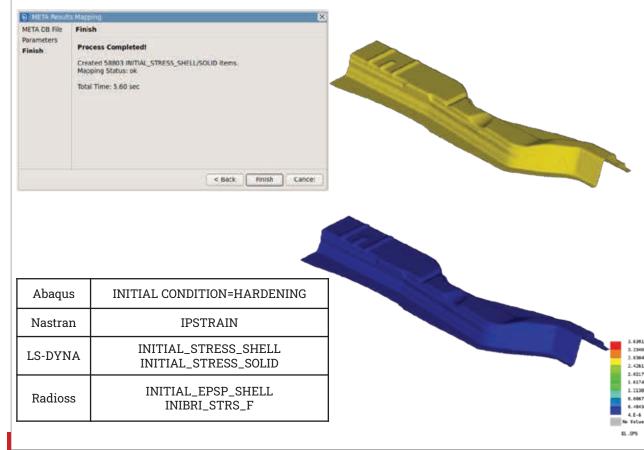


me	No	lue	101.
Area		ius.	- 200
A		3631	
		3031	.2
Bendrig			
- Centroid			
EX.Y			2
Xs		65216e-0	
Ys.		0024444	17
- Moment	sutiner	tia	
B-X-Y			
be.		59015e+0	
- W		59046e+0	
DC	y	1.9952	14
0.1+2			
11	7.5	\$9016e+0	36
12	7.5	59015e+0	16
		-1.5044	
B Polar	momen	t of Inerti	A
ю	plar 1.1	51806e+0	92
O Electric S	ection n	10duli	
8-8-9			
W		48684	ă 👘
W	V	1061	17
01.2			
W	1	48684	6
w		48683	
= Plastic s			8
= x · y			
	DK.	14140	
	DV.	14143	
= 1-2			
	p1	14131	
	02	14121	
Torsion	PF.	2425	
Shear of	enter		
1 20.0			
		.0046664	
Tr		.0038185	10
- Torsiona			
tt		04165e+0	22
C Warping		M.	
8-At ce			
	(a)	40184	62
	ear cent		1.1
	im)	40135	
< Camma	function	(ABAQU	51
Cam	ma	124.70	16 .
	Tot	al 30 sel	ected 0
-	PRIMA	COMPANY.	WT L
Cam	ma	70.578	18 .
		a 30 se	


دي. Cross Section tool

FE Solver:

 Calculation of Mixed Thin-Solid cross sections


Results Mapper Tool

Result Mapper Tool on Integration Points

- Results on integration points over thickness of shells or solids can be used for mapping
- Available both for source and target model
- Supported with RBF method

Results Mapper Tool

META Results Mapping plugin

Mapping of Equivalent **Plastic Strains**

- Results of META Db: \geq
- EPS

3.63919

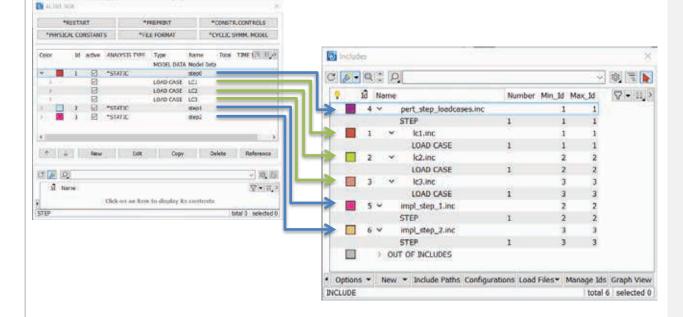
3.73494

2.83848

2,42613 2.62177 1.45742

1.21307

0.008712


0.484358

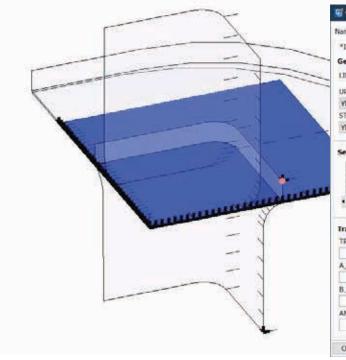
4.5.4

- PEEQ
- EquivalentPlasticStrain
- > Map to initial condition solver entities for Abagus, Nastran, LS-DYNA, Radioss


Specific Solver Features & Techniques

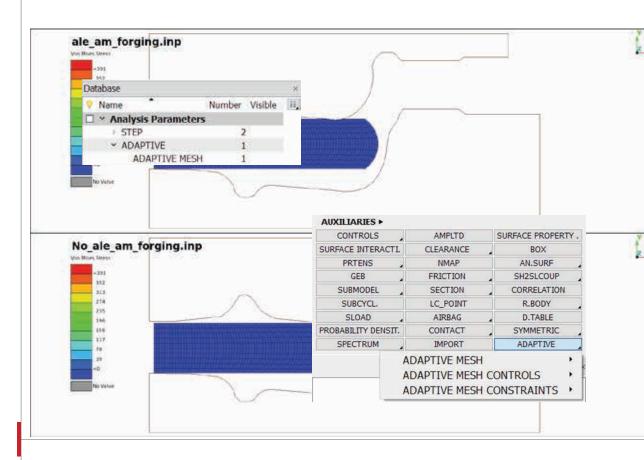
ABAQUS *STEP and *LOADCASE to Includes

Step and Loadcase keywords can now be split to separate include files


122.0.0

Building an evolution analysis

- Set up Multiple nonlinear load cases
- *MANIFEST available in: Step Manager


Loadcase Assistant

•IMPORT	<u> </u>						
Name:							
*IMPORT	*]P	IPORT CONTR	OLS	*IMPORT ELSE	T. MIN	PORT INSET	1.00
General							
LIBRARY	to/ab	_import_test/	/runs/de	epdrawbox_ex	n form o	db 🗃 Pre	weiw
UPDATE		RENAME		EOFFSET		OFFSET	
YES		NO			0	in the first	0
STATE		STEP		TYPE	F	RAME	
YES		1.0	est step	INCREMENT	-	Los	t frame
Name BLANK	Ad	d		New		Delete	
BLANK •	atio					Deinte	
BLANK	atio		LY	New TRAN	8_Z	Delete	
BLANK •	atio		LY		s_2	Delete	ļ
BLANK	atio	TPANS	LY	TRAN	8.2	Delote	
BLANK	atio	TRANS	LY	TRAN	8.2	Delote	

Transferring results between analyses

- Support of *IMPORT
- > Example:
 - 1. Deep drawing with Abaqus/Explicit
 - 2. *IMPORT deformed geometry and stresses
 - 3. Spring back with Abaqus/Standard

Enabling the adaptive mesh technique

> Define an adaptive mesh domain

Supported: *ADAPTIVE MESH *ADAPTIVE MESH CONSTRAINTS *ADAPTIVE MESH CONTROLS

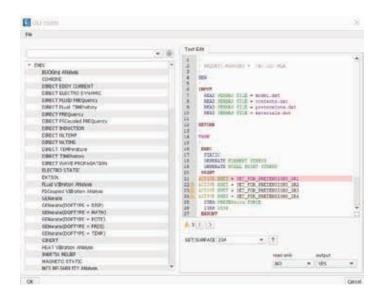
423.1.0

Marc Module

Entities	Define Parameters	
Section Node Section Vector Parameters	Create Point Lo. • Magn	1000
Finish	LOADCASE OPTIONS	1
	Create Fixed Di * Magn.	
	LOADCASE OPTIONS	2
	Show Selected Elements	
	Calculate Contacts	

Marc Pretension Assistant

- Automatic generation of pretension respective keywords
- Definitions of appropriate loadcases
- Auto-Detection of contacts around solid bolt

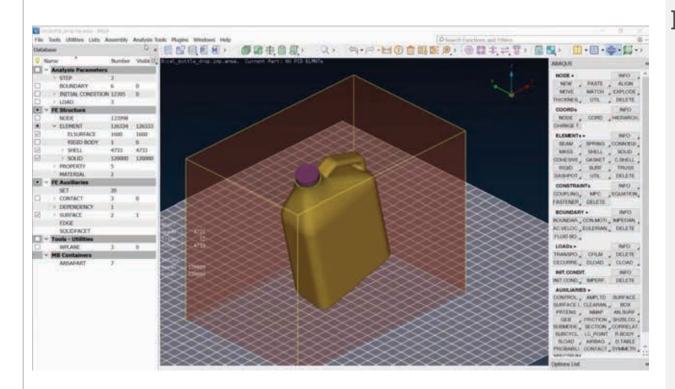

Permas Module

Const Per yes Data	*
Send Dingkte Contt: Co	Noted to See of Parameters shall the check of these by: Before: * * *
CK	Game

کې. Contact Flanges improvements

- Definition of Load parameters for contacts, pretensions and Pressfit
- Springs to restrain rigid body motion

Permas Module


SET HOLP		1.1
PROF DI		• 15.5
Si tarse	OUTPUT TYPE	VERD
THE RELATE PREPAREMENTS.	NIET .	
332 SET_FOR_SHEETHS_BOTH	NSET	
212 SET_FOR_3HEET15_807H	NICT	
231 SET FOR SHEET2S BOTH	NIET	
230 SET_10R_SHEET15_801H	NIET	
229 SET_FOR_W/T55_TOP	NIET	
238 SET_FOR_W/T26_10P	NIET	
217 SET_FOR_WITLS_TOP	HIST	
216 SET_FOR_SCREWEL_HEAD	NSET	
225 SET FOR SCHEWISE HEAD	NIET	
234 SET FOR SCREWAS HEAD	NET	
222 SET_FOR_SOREA/25_HEAD	1067	
222 SET_FOR_PLATE_R_UPR	10E7	
221 BET FOR PLATE L LOW	NUET	
220 SET, YOR, PLATE, L. UPR	NIET	
219 SET FOR INLET 5 OUT	MILT	
218 SET FOR BUET M OUT	- MIET	
212 SET FOR INLET L OUT	MACT	
216 SET_FOR_3CREWIGL_THED		
215 SET FOR SOMEWSL THRO		
214 SET FOR SCREWAL THRD		
213 SET_FOR_SEREVISE_THRD		
212 SET_HOR_SOREVIZE_THRD		
211 SET_ROR_SCREWIL_THED		
240 SET_FOR_PLATESL_THED		
285 SET FOR PLATES, THED		
2H4 SET_FOR_PLATEN_THED		
283 SET_FOR_PLATER_THED		
212 SET_FOR_PLATES_THED		
201 SET_FOR_PLATELS_THED		
133 SET_FOR_W/THE_TOPE_E		
132 SET_FOR_WITES_TOP4_1		
131 SET FOR WITHS TOPD 1		
130 SET_404_WTHE_T040_1		
129 SET_HOR_WIT25_TOP#_1		
THE SET SHE WITH THEM I		ALT IN MARK

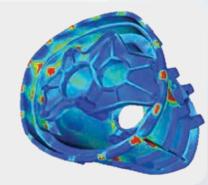
UCI Editor

Interactive
 Communication of
 Database Browsers Sets
 List with Activated
 Sets

Common feature for Solver Modules

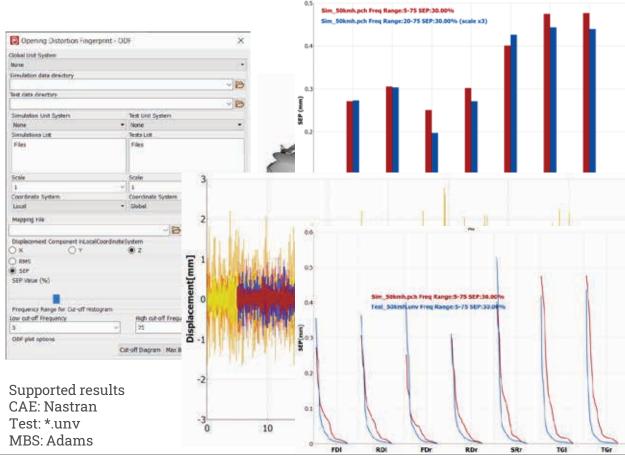
Direct job submission

- > Submit
- > Execute


> Monitor

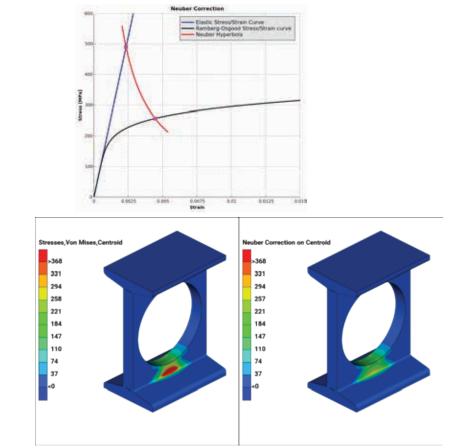
- Data Check
- Available in Abaqus, Ansys, Marc, Nastran, Optistruct, Permas

423.0.0



META Toolbars

User Toolbars



ODF – Opening Distortion Fingerprint

- Body stiffness evaluation through the distortion of closure openings
- Based on dynamic simulations/ measurements
- Evaluation of distortion per opening :
 - Max bar chart
 - Over frequency range
- Direct comparison measurement/ computation

PP.I.

User Toolbars

- New User Toolbar
- Calculate the equivalent plastic stress from a linear elastic analysis

Composites Modeling & Analysis

BETA

Composites

Short Fiber Options Continuous Mesh RVE	Fiber Options Multilayer Options Generate Using Solid intersection	•		
Homogenized Material	Isotropic			
Creace contacts at interface	Create contacts at layers interface	1		
	1			
	1	10		
 Create periodic BCs 	Shear-KZ	10		
Cieate	Delete			
			· · · · · · · · · · · · · · · · · · ·	10
ОК		Carcel		

دی. Homogenization Tool. RVE Generation

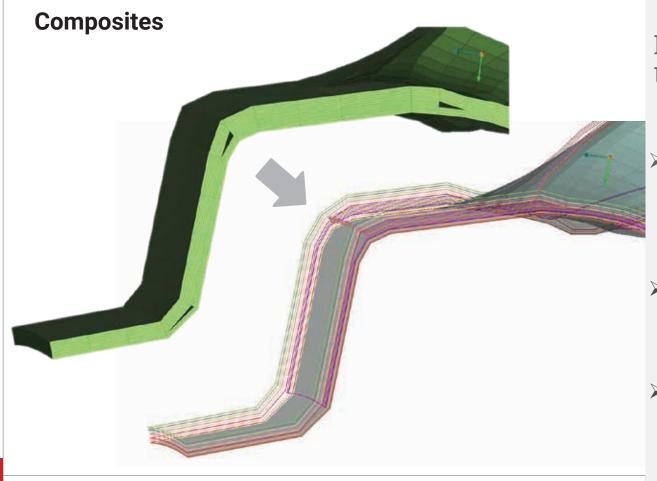
- Periodic Boundary Conditions for generated RVEs
- Ready to run RVE models are created for:
- EPILYSIS
- Nastran
- Abaqus
- Ansys
- LS-DYNA (Implicit)
- PAM-CRASH (Implicit)

Composites

Short Fiber Options	Continuous Fiber Options	Multilayer Op	tions Generat	e External	RVE			
Select model with RVE			0 status Media			٥		
RVE Dimensions (X,Y,	Z)	500.		500.		500.		
Actions	Axial-X					•		
Apply								
Post / Nonlinear FE H	omogenization							
Solved filename C:\U	lsers\demo\External_RVE_	solved.inp						
Apply							-	0511-0023
			Non linear FE Ho Choose curve type					
		1		-	strain11	* Add curve	Export curve	Make Materiai
ок		ſ	Strain St 1 0. 2 0.0036 3 0.00721 4 0.01858 5 0.01453 6 0.018209 7 0.021891 8 0.025577 9 0.032956 10 0.032956 11 0.036649	87961 35095 97396 87497 4.5768 85565 47332 00393	120 100 \$80 50 40 20 0	AtroStrain11Str derStrain11Stre konogenieedStr	eoII hini 1Stress II	0.03 0.035 0

Homogenization Tool: RVE

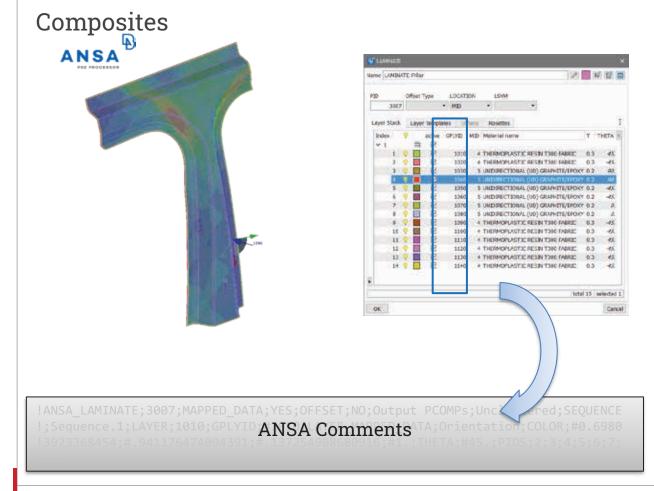
- External RVE Model treatment
- > Pre:
 - Mesh Geometry
 - Apply Periodic BCs
 - Solve with Epilysis for Linear FE Homogenization
- > Post:
 - Nonlinear FE Homogenization from solved RVE models


Composites

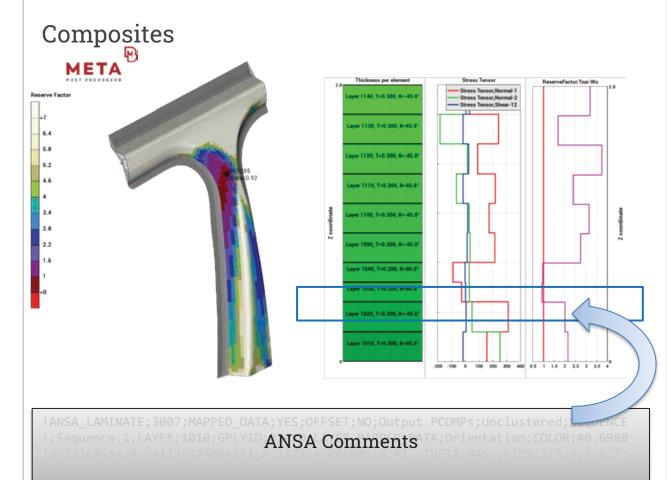
DAY 2 THURSDAY JUNE 15, 2023 - Afternoon Sessions

15:00 - 15:30

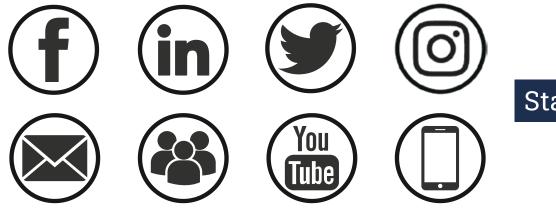
Introducing the redesigned Representative Volume Element (RVE) Generator Tool Vangelis Palaiokastritis



Laminate Tool: Unvolumize


- Generate shell composites from respective solid composites
- Available for both single element and per ply stacking definitions
- Accessible from Laminate Tool and Database Browser

\$22.0.0


- Lamination information through ANSA comments inside the Ansys .cdb
- Input: Recreate initial laminate structures

Mapping composite results to Ansys Laminates

- Retrieve Lamination information from ANSA comments inside the Ansys .cdb
- Recreate initial laminate structures

Stay connected

www.beta-cae.com