

Groundbreaking Simulation Solutions

Suitability of meshing strategies for CFD

N Mitroglou – BETA CAE Systems UK

www.beta-cae.com

Background

- Traditional surface and volume meshing is still the preferred choice for high-fidelity CFD results
- Hexahedral elements are still considered ideal for CFD solvers
- Polyhedral elements are considered the "next-big-thing"
- Numerous combinations of surface, layers and volume mesh types
- Do we know the "best" choice for any one case?
 - Motorsports community prefers triangular surface mesh
 - The aerospace industry has no other option, but vote for quadrilaterals

University of Birmingham / School of Metallurgy & Materials

Motivation

Internal & external flows

Highly complex models

Mesh sizes from 15 – 125M

Hexahedrals ~85% Polyhedrals ~14%

NACA 0012 Wingtip vortex

Solver: Flow360 Steady-state (RANS – wall-resolved) 4 mesh types

Imperial Front Wing [IFW]

Solver: Fluent 2022

Transient (URANS - wall-resolved)

12 mesh-type combinations

Introduction

Experimentally validated cases

An aerospace model

A motorsports model

Numerous mesh types

NACA 0012 Wingtip Vortex

Model setup

NACA 0012 Wingtip vortex

Data from NASA Ames -Turbulence Modelling Resource

Light geometry

10° AoA

 $U_{\infty} = 0.152 \text{M} (51.816 \text{m/s})$

Tunnel length is 8.5m

Exp. Results include planar velocity contours

NACA 0012 Convergence

NACA 0012 – Normalised U_{planar}

NACA 0012 - C_P

Imperial Front Wing

Model setup

Geometry as found in Imperial College London repository https://data.hpc.imperial.ac.uk/resolve/?doi=6049

Pegrum JM. Experimental study of the vortex system generated by a Formula 1 front wing. PhD thesis. Imperial College, London, 2007

IFW

Real motorsports model

Experiments in public domain

Freestream U_{∞} = 13m/s

Moving ground

Chord length: *c* = 250mm

Ride height: h/c = 0.36

Mesh

IFW

Mesh independence:

-ULOW/LOW/MED/FINE/XFINE (x3) /(x2) /(x1.5)/(x1) /(x0.75)

-Adapted layers: y⁺~<1

-30-35 layers

-Vortex cores refinement

-3 levels of bulk refinement

Su	rface		Volume		
Main	Features	Layers	Transition	Bulk	count
Tria	Tria-Feat	t Prisms	Tetra	HxInt	<image/>

Su	rface		Volume		
Main	Features	Layers	Transition	Bulk	count
Tria	Tria-Feat	Prisms	Tetra	HxInt	
Tria	Tria- <mark>SF</mark>	Prisms	Tetra	HxInt	TRIA-LEcyl

MainFeaturesLayersTransitionBulkcountTriaTria-FeatPrismsTetraHxIntTriaTria-SFPrismsTetraHxIntTriaTria-SFPrismsPolyHxInt		Su	rface		Volume		
TriaTria-FeatPrismsTetraHxIntTriaTria-SFPrismsTetraHxIntTriaTria-SFPrismsPolyHxInt	Μ	ain	Features	Layers	Transition	Bulk	count
TriaTria-SFPrismsTetraHxIntTriaTria-SFPrismsPolyHxInt	Т	ria	Tria-Feat	Prisms	Tetra	HxInt	The source of
Tria Tria-SF Prisms Poly HxInt	Т	ria	Tria-SF	Prisms	Tetra	HxInt	
	Т	ria	Tria-SF	Prisms	Poly	HxInt	

S	ırface		Volume		
Main	Features	Layers	Transition	Bulk	count
Tria	Tria-Feat	Prisms	Tetra	HxInt	
Tria	Tria-SF	Prisms	Tetra	HxInt	
Tria	Tria-SF	Prisms	Poly	HxInt	
Tria	Quad	Prisms	Tetra	HxInt	

	Surfa	ace		Volume		
Ma	in F	eatures	Layers	Transition	Bulk	count
Tr	ia T	ria-Feat	Prisms	Tetra	HxInt	
Tr	ia	Tria-SF	Prisms	Tetra	HxInt	
Tr	ia	Tria-SF	Prisms	Poly	HxInt	
Tr	ia	Quad	Prisms	Tetra	HxInt	
Tr	ia	Quad	Prisms	Poly	HxInt	

Convergence

Simulations run for 1+ flow-through time

Last 500-700 time-steps

∆t = 0.001s

 $1 \text{ cnt} = \Delta C_{d} = 0.001$

Surface			Volume		
Main	Features	Layers	Transition	Bulk	count
Quad	Quad	Hx	Tetra	HxInt	
Quad	Quad	Hx	Poly	HxInt	QUAD- POLYTrans
					www.beta-cae.com

Convergence

Simulations run for 1+ flow-through time

Last 500-700 time-steps

∆t = 0.001s

 $1 \text{ cnt} = \Delta C_{d} = 0.001$

	Su	rface		Volume			
Μ	ain	Features	Layers	Transition	Bulk	count	
Ρ	oly	Quad	Poly-Hx	Poly	HxInt		H
Р	oly	Poly	Poly	Poly	HxInt		
Ρ	oly	Poly	Poly	Poly	Poly		

Convergence

Simulations run for 1+ flow-through time

Last 500-700 time-steps

∆t = 0.001s

 $1 \text{ cnt} = \Delta C_{d} = 0.001$

Flow visualisation

ß

QUAD-POLYTrans

TRIA-POLYTrans

B

Wall shear stress

-1

QUAD-POLYTrans

W=U_z

V=U_v

Normalised velocity (V&W)

QUAD-POLYTrans

TRIA-POLYTrans

W=U_z

V=U_v

Normalised velocity (V&V)

Conclusions

- Mesh type should "match with" the solver (dependency on solver technology)
- Polyhedrals on surface do not look so promising
- The best convergence in the study achieved by "Quads-Poly's-HexaInt"
- No obvious discrepancies were identified between the two main grids (Q vs. Tr)
- In a real, complex motorsports case geometry
 - Quads on surface produced a small element count, without compromising results and demonstrated best convergence (C_d/C_l) [down to 0.06cnts]
 - Trias on surface produced moderate convergence and no apparent issue in the flow-field results
 - Smoothed hexa-interior transition between levels proved advantageous

Stay connected

-1

QUAD-POLYTrans

TRIA-POLYTrans

W=U_z

Normalised velocity (V&W)

Section Separator

Text size no smaller than 16

Title

Description

Text size no smaller than 16

Text Box

Title

Description

- Level
 - -Level
 - Level