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ABSTRACT – 
The future of the automotive industry is electric. Guaranteeing the perfect match 
between sustainability and performance is our challenge. A feature which plays a 
crucial role in this challenge is the weight of the car. Lighter structures mean 
higher battery autonomy, as well as lower production costs for the company. At 
the same time, weight reduction can lead to the deterioration of the car functional 
properties. Standard vehicle development projects are still driven by trial-and error 
methods. Based on experience, car body designers propose tentative 
configurations of the structure, which are then tested by the simulation team. 
Inevitably, multiple configurations need to be tested before a satisfactory design 
is reached. Moreover, due to time constraints, only few configurations can be 
analysed, which limits our understanding of the problem and ignores potentially 
better solutions. Artificial Intelligence (AI) and Machine Learning (ML) 
techniques offer new ways to push our boundaries. They are based on the idea 
that we do not need complex and time-consuming models to identify patterns in 
the behaviour of a structure. The method developed in the context of this work uses 
this principle to maximize the stiffness and comfort behaviour of a car while 
minimizing its weight. Based on a machine learning approach known as Proper 
Generalized Decomposition method (PGD), the tool self-learns how to 
approximate the solution of a complex problem depending on a set of design 
parameters (material/geometry properties of car components). It consists of 
three main phases. First, it parametrizes the model. Next, with only one 
computation, it automatically computes a parametric solution which contains the 
results for every possible combination of predefined design variables. This 
parametric solution is then used to perform fast optimization analysis. All results 
are uploaded to an interactive app, where users, both technical and nontechnical, 
can explore in real-time how changes in the design variables affect the 
car performance and make decision accordingly, thus drastically reducing the 
repetitive iterations in the development process and improving the quality of the 
final solution. 
 
TECHNICAL PAPER – 
 
1. INTRODUCTION 
 
The automotive design process is complex and time-consuming, requiring collaboration 
between engineers from different areas of expertise to predict and optimize every aspect of 
the product. Meeting numerous targets and regulations while keeping up with the fast-paced 
global market adds further challenges. To remain competitive, automotive companies must 
improve development efficiency by reducing time-to-market and production costs without 
compromising quality. Simulation-based studies are crucial in the early design phase, but the 
extensive computational requirements of detailed vehicle models make them impractical for 
exploring the entire design space. Consequently, the industry often relies on a trial-and-error 
approach, leading to potential issues and resource waste. To address these limitations, this 
work proposes to enhance standard simulations with Machine Learning (ML) methods to 
optimize the automotive design process and achieve better outcomes.  
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An innovative methodology is introduced to assess the noise and vibration (NVH) 
performance of car-body structures. NVH simulation engineering plays a critical role in 
ensuring that the product meets noise and vibration criteria, thereby improving comfort, 
quality, and customer satisfaction. This target is highly influenced by the global static and 
dynamic stiffness of the vehicle body structure, making it extremely sensitive to changes in 
design parameters. To address this challenge, the proposed approach extends a physics-
informed machine learning technique known as Proper Generalized Decomposition (PGD) to 
solve parametrically the dynamic and static analysis of a structure characterized by material 
and/or geometric design variables. The main idea is to construct a parametric FE model of 
the structure and then employ the PGD-based parametric solver. This technique effectively 
reduces the dimensionality of complex models with only one offline computation, enabling 
the identification of behavioral patterns within the structure. By utilizing the proposed method, 
engineers can develop predictive models capable of rapidly evaluating multiple design 
configurations, facilitating the identification of optimal choices that meet NVH requirements. 
Employing this methodology allows engineers to navigate the design space more efficiently, 
enabling early-stage decision-making and minimizing the risk of encountering design 
challenges in later stages. Next challenge is to allow an easy interaction of the methodology 
with BETA pre- and post-process software, such that a user-friendly frontend interface can 
be used by engineers in daily activities. 
 
The proposed method was developed in the context of the doctoral thesis “Static and 
dynamic global stiffness analysis for automotive pre-design”, one of the 15 projects 
implemented in the context of the Pro-TechTion programme (Industrial decision-making on 
complex Production Technologies supported by simulaTion-based engineering), funded by 
the European Union’s EU Framework Programme for Research and Innovation Horizon 2020 
(more info at:  https://www.lacan.upc.edu/ProTechTion/ ). The thesis was supervised by the 
Universitat Politècnica de Catalunya (UPC) and Swansea University (SU), in collaboration 
with the automotive company SEAT S.A. as industrial partner. The project is currently in a 
“Proof of Concept” stage at SEAT, such that it can be included in the current SEAT workflow.  
  
 
2. THE METHODOLOGY 
 
The mathematical details of the proposed method are extensively described in the 
referenced publications (1-3). From a conceptual point of view, the method consists of three 
phases (pre-process, ML solver, post-process), which are described in the following three 
subsections. 
 
2.1. Pre-process 
The pre-process starts with the preparation of a parametrized FE model of the BiW structure. 
In this work, this is done by means of the ANSA-BETA pre-processor software, which 
contains a powerful Optimization Task Tool able to organize the set-up of an optimization 
study. The first step consists of defining the design variables (DVs) and their ranges of 
variation. If geometric parameters are considered, they are defined by means of the 
morphing tool available in ANSA, which allows to manage the shape changes. The Design 
Variables are also able to control any other ANSA entity or ANSA card, through the 
respective ANSA parameters. Based on the DVs definition, the tool can generate a Design of 
Experiment (DoE) containing all the possible combinations of the parametric values of 
interest. Once the experiments are defined, the FE output solver files are generated in the 
desired commercial software, which in this work is MSC-Nastran. By using a special Nastran 
language (DMAP), all the input files generated by the DoE study are run such that the input 
quantities of the underlying problems (in this case the mass and stiffness matrices) are just 
assembled and stored, without solving any static or dynamic problem. The stored files are 
then uploaded into an in-house code and expressed in the PGD format as explained in (3). 
 
 

https://www.lacan.upc.edu/ProTechTion/
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2.2. Machine Learning solver 
The machine learning solver utilized in this study is an extended version of the Proper 
Generalized Decomposition (PGD) method (4), specifically designed for analysing the static 
and dynamic global stiffness of a Body-in-White (BIW) structure. To tackle the parametric 
static problem, the solver incorporates the Inertia Relief method, which determines the 
equilibrium state of an unconstrained structure. In parallel, the dynamic problem is solved by 
performing a parametric modal analysis to compute vibration modes and natural frequencies, 
ensuring that relevant targets are met.  
The solver is fed with parametric input derived from the pre-processing stage. Acting as a 
black-box for the end user, the algorithm approximates the solution through a single offline 
computation. This resulting parametric solution, known as a surrogate model, captures the 
behaviour of a standard simulation model with sufficient accuracy. Moreover, it allows real-
time evaluation of the problem's solution for any combination of the predefined parameters. A 
notable advantage of this method is its reliance on the governing equations and physics of 
the problem, enabling the construction of a robust and reliable model without the need for 
extensive training data. Specifically, the method requires only an initial sampling of the input 
data (rather than the solution itself). This effectively reduces the computational cost of the 
pre-process phase, as no full-order simulation must be run. Moreover, it reduces the 
uncertainty arising from sampling choices, alleviating the burden on the user to make 
intricate decisions regarding data sampling and calibration of the machine learning model's 
parameters.  
 
2.3. Post-process 
The obtained parametric solution can be easily post-processed in order to perform efficient 
optimization studies. Moreover, all the results can be uploaded to a standalone interactive 
app which was developed in the context of this work, where users, both technical and non-
technical, can explore in real-time how changes in the design variables affect the car 
performance. This tool can be used as support by the structural designers for the decision-
making process already during the preliminary phase of the design process, thus drastically 
reducing the repetitive iterations in the development process and improving the quality of the 
final solution. 
 
3. NUMERICAL EXAMPLE 

 
The proposed method is tested on a simplified BiW structure. Fig. 3.1 shows the geometry 
and the mesh discretization of the model, which is formed by 3819 nodes. Isoparametric 
triangular and quadrilateral elements based on the Mindlin-Reissner shell are used. 
 

 
Fig. 3.1. Geometry and mesh properties of the 

BiW structure (left). The two car components highlighted 
(right) are characterized by parametric properties, 

that is the thickness and the cross section of 
each one of the components. 

 
All the car components are characterized by isotropic linear elastic materials (MAT1 in MSC-
Nastran). In this example, four parameters are introduced as design variables of the problem, 
which are the thickness and the cross sections of the C-pillars and the rear long members 
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shown in the right picture of Fig. 3.1. Table 3.1 summarizes the DVs definition. Each of the 
four parametric spaces is discretized by means of nine equidistant nodes, which means that 
the total number of parametric combinations is given by mtot = 94 = 6,561 different 
configurations. 

Table 3.1. Design variables 

 
 

The solver requires a sampling of the input data (mass and stiffness matrices) for each 
combination. To do that, a list with all the 6,561 parametric combinations can be uploaded 
into the ANSA optimization tool. Then, a Design of Experiments (DoE) study can be set up 
which automatically generates the input files in the format of the desired commercial 
software, which in this work is MSC-Nastran.  All the input files generated by the DoE study 
are run such that the mass and stiffness matrices are just assembled and stored, without 
solving any static or dynamic problem. The stored files are then uploaded into an in-house 
code and expressed in the parametric format required by the PGD method (1-3). 
 
The parametric global static and dynamic stiffness analysis is then performed by means of a 
PGD-based methodology to optimize the NVH performance of the BiW structure. Two 
quantities of interest (QoIs) are obtained in a parametric format:  

- the Equivalent Torsional Stiffness (ETS): to assess the static stiffness of the BiW; 
- the natural frequency of the first torsional mode: to assess the dynamic stiffness of 

the BiW. 
 
The accuracy of the method is measured by comparing the two quantities of interest (ETS 
and torsional frequency) with the corresponding full-order results, which resulted into a 
maximum relative error in the order of 103. It is important to mention that the PGD results 
were obtained by performing only one offline computation for the static and dynamic 
problems and then particularizing the results for any parametric combination in real-time. On 
the contrary, a total of 13,122 full-order simulations (6,561 for the static and 6,561 for the 
dynamic case) were needed to sample the results by means of standard methods.  
 
In order to show the potential of the proposed methodology, a multiobjective optimization 
analysis is performed. The goal is to find the optimal combinations of the parameters such 
that the ETS and torsional frequency are maximized while the mass of the two parametric car 
components is minimized. Three objective functions are defined as:  

 
 
where M(µ1, µ2, µ3, µ4) represents the total mass of the C-pillars and the rear long members, 
depending on their variable geometries and thickness. Clearly, this quantity is strictly related 
to the production cost. ETS(µ1, µ2, µ3, µ4) and ft(µ1, µ2, µ3, µ4) are the parametric static and 
dynamic output, respectively, obtained by means of the proposed PGD-based algorithm. The 
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explicit dependency of the three functions on the parameters permits to easily compute the 
Pareto front (Fig. 3.2) of the multiple objective functions by means of a genetic algorithm 
(GA). The cloud of sampled points in the plot represents the mass and ETS coordinates 
corresponding to each of the 6,561 parametric combinations considered initially. The 
optimisation study allows to drastically reduce the number of configurations which would be 
considered by the designers in the final decision-making process. 

 
Fig. 3.2. Multi-objective optimization showing 

the Pareto front as a function of the objectives. 
 
Finally, a graphical interface app was developed by using the Matlab App Designer software, 
providing an interactive visualization of the results, such that the designers can check in real-
time the effects of variables on the global static and dynamic behavior of the BiW structure. 
The developed app is just an example of the potential of this method. In fact, the information 
contained in the app could be modified and adapted to the needs of the specific problem, 
representing the kind of support that the industry urgently needs to optimize the development 
process. 

  
Fig. 3.3. Graphical interface of the developed 

PGD-NVH app for the static and dynamic analyses. 
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4. CONCLUSION & CHALLENGES 
 
The proposed ML technique, based on the PGD method, allows to efficiently explore an 
arbitrary large design space, and perform real-time sensitivity analysis with respect to the 
different design parameters. The key idea behind the method is to invest an initial affordable 
computational effort, already during the preliminary phase of the design process, to build an 
accurate surrogate model of the problem. The obtained reduced model is then used to 
perform efficient optimization studies and real-time evaluations, which empowers the 
designers during the intricate decision-making process. 

 
Currently, the authors are working on scaling up the methodology and test it on real industrial 
models. Moreover, one of the main objectives is to encapsulate the whole technique in a tool 
which can be easily used by our engineers. To reach this goal, one possibility is to couple the 
proposed ML-solver with BETA pre- and pot-process software. 
 
At this purpose, the next purpose is to create a BETA-based graphical interface which can 
perform the following three steps:  

1. Pre-process (coupled with BETA-ANSA):  

 To parametrize a model (entities and/or geometric morphing) 

 To set up a DOE analysis (in order to generate the input decks in the desired 
FE software format) 

  
2. In-house machine learning solver: 

 Call in-house PGD-based toolbox (written in Python language) to solve the 
parametric problem and generate a surrogate model  

 Convert the results into an ANSA-META readable format 
 

3. Post-process (coupled with BETA-META): 

 Visualize the parametric results in ANSA-META (e.g., parametric curve plots, 
heatmaps, deformations, etc.) 
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