Optimization and Quick Verification of an Electric Vehicle Side Frame Design using Machine Learning Methods

Christina Chatzigeorgiadou, Athanasios Papadopoulos, Dimitrios Drougkas BETA CAE Systems SA

ML Optimization Method:

Quick Verification:

Quick Verification:

- Model Set-Up Ο
 - **EV Platform**
 - **Rigid Pillar**
 - Li-ion Battery packages

Side Crash Simulation

Macroscopic Battery Model:

- Macroscopic [BatMac]
- Homogenized layers

Component	Material	
Collector (+)	Al	
Cathode	LiFePo4	
Separator	PE	
Anode	Graphite	
Collector (-)	Cu	

To minimize hazard \rightarrow Retain stress on cell elements below critical value

Optimization Task

- Pre-Processing
 - Design Variables
 - **Entity Parameters**
 - **Morph Parameters**
 - Output Solver File

Solver

FE Analysis

- Post-Processing
 - Output Response values

Design Variables:

- Plates Thickness
- Position
- Rocker shape

Response Values:

- Number of Cells where *O(t)>Ocritical*
- Rocker Mass

Generation of experiments' DV values

DOE Set-Up

- Selection of Algorithm
- Selection of DVs
- Number of experiments

Opt	imization Task
	Pre-Processing
	Design Variables
	Entity Parameters
	Morph Parameters
	Output File
	Solver
	Executable path
	Post-Processing
	Session file - Responses

Correlation Matrix of DVs & Responses

Predictor

• Ranking of Design Variables' according to importance

Predictor

• Test Accuracy vs. Size of Training Set Test Mean Absolute Error estimated using nested cross-validation

• Variance Estimation

Predictions on a dataset with confidence bounds:

MAE of Variance: 2.9933 Accuracy: 86.735%

MAE of Variance: 0.0459 Accuracy: 87.755

Baseline Model | Optimization Task

DOE

• Optimization Evaluation

Re	sponse	Initial Model	Predicted Optimal	Validated Model			
Mass [kg]		37.56	24.57	24.39			
Num. of c	lamaged cells	68	37	46			
68 damaged cells 46 damaged cells							
<pre>close</pre>							

Baseline Model's Geometry Modification:

- The previously trained predictive model is used
- A Similarity Factor between the Baseline and Modified Model is calculated per DV

Design Parameter	Similarity Factor (%)	
Plate Thickness 1	1.0	
Plate Thickness 2	1.0	
Plate Thickness 3	1.0	
Plate Thickness 4	1.0	
Plate Thickness 5	1.0	
Plate Thickness 6	1.0	

Modified geometry with Baseline DVs

r0

Response	Initial Model	Predicted	Real Modified
Mass [kg]	37.56	35.8	35.82
Num. of damaged cells	68	72	73

Same dataset used to train 3D-results ML Predictor

- A semi-automated Optimization workflow with
 Machine Learning methods has been introduced
- The optimal design of an EV side frame is achieved
 by eliminating li-ion batteries hazard & preserving low mass
- The same predictive model can be used to quickly verify any considerably small modifications of the baseline model
- The procedure is completely customizable at every stage, suitable for any other complex problem

Stay connected