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Optimal Design 

Initial Rocker Design 

ML Optimization 

Meet safety standards 
Respect essential design parameters 

Scope  
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Quick Verification: 

Why Machine Learning? 

Modified Model 
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Baseline Model Optimization Task DOE Predictor Optimizer 

o Model Set-Up 

EV Platform 

Rigid Pillar 

Li-ion Battery packages 

Side Crash Simulation 
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Component Material 

Collector (+) Al 

Cathode LiFePo4 

Separator PE 

Anode Graphite 

Collector (-) Cu 

Macroscopic Battery Model:  

Randles equivalent circuit 

Macroscopic [BatMac] 

Homogenized layers 

Baseline Model Optimization Task DOE Predictor Optimizer 
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Objective: Battery Hazard   Mass   Constrain: 

Baseline Model Optimization Task DOE Predictor Optimizer 
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Crash Loads 
on cells 

 

Simulation  
time step 

t 

Stress 
(t)               

Short Resistance 
R [Ohm] 

Randles 
Circuit 

if  
(t) > critical 

Randles Short Function 

To minimize hazard        Retain stress on cell elements below critical value 

Baseline Model Optimization Task DOE Predictor Optimizer 
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Randles 
R0=0.2 Ohm 

Internal Short Resistance 
R=0.001 Ohm 

critical  Randles r0 [Ohm] 

Baseline Model Optimization Task DOE Predictor Optimizer 



www.beta-cae.com 

Design Variables: 

Plates Thickness 

Position 

Rocker shape    

Optimization Task 

Pre-Processing 

Design Variables 

Entity Parameters 

Morph Parameters 

Output  Solver File 

Solver 

FE Analysis 

Post-Processing 

Output Response values 

Response Values: 

Number of Cells where (t)> critical 

Rocker Mass 

Baseline Model Optimization Task DOE Predictor Optimizer 
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DOE Set-Up 

• Selection of Algorithm 

• Selection of DVs 

• Number of experiments 

Generation of 
experiments’ DV 

values 

100 Simulation  
Runs 
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File repository 
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DV based Predictor DOE studies        Training Datasets 
 

Assigned DVs 
Responses 

Responses 
selection 

ML Training 
Regression 

+ Incremental 

ML Retrain 

+ New Studies 

Baseline Model Optimization Task DOE Predictor Optimizer 

100 Simulation  
Runs 

 

File repository 
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Correlation Matrix of DVs & Responses 

Baseline Model Optimization Task DOE Predictor Optimizer 
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Baseline Model Optimization Task DOE Predictor Optimizer 

Responses & Design Variables Pair Plot 
 

Thickness 1 Thickness 2 Thickness 5 Thickness 6 Thickness 7 Thickness 8 Plate Loc. Pillar Width Mass Damaged  
cells 

Mass 

Number of damaged cells 

Predictive Power Score: Mass: 0.98 Num. of damaged cells: 0.64 
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o Ranking of Design Variables’ according to importance 
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Baseline Model Optimization Task DOE Predictor Optimizer 

Num. of damaged cells Rocker Mass [kg] 
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o Test Accuracy vs. Size of Training Set 
Test Mean Absolute Error estimated using nested cross-validation 

Baseline Model Optimization Task DOE Predictor Optimizer 

Num. of damaged cells Rocker Mass [kg] 
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o Variance Estimation 
Predictions on a dataset with confidence bounds: 

MAE of Variance: 0.0459 Accuracy: 87.755 MAE of Variance: 2.9933 Accuracy: 86.735% 

Num. of damaged cells 

Baseline Model Optimization Task DOE Predictor Optimizer 

Rocker Mass [kg] 
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Parameters 

•Algorithm 

•Convergence 
Tolerance 

•Iterations 

Predictive Models 

•Number of 
damaged cells 

•Pillars Mass 

Constrains & 
Objective 

•Mass < 36 kg 

•Minimize the 
number of 
damaged cells 

• Differential Evolution 
• 0.0001  
• 600 

Baseline Model Optimization Task DOE Predictor Optimizer 
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Optimal Solution 

Predicted mass: 24.57 kg 
Predicted Num. of damaged battery cells: 37 

 

Optimizer output  

Mass vs. Number of damaged cells 

Initial Rocker Design Optimal Rocker Design 

Baseline Model Optimization Task DOE Predictor Optimizer 



www.beta-cae.com 

Results  

o Optimization Evaluation 

Response Initial Model Predicted Optimal Validated Model 

Mass [kg] 37.56  24.57 24.39 

Num. of damaged cells 68 37 46 

68 damaged cells 46 damaged cells 

<0.2 

r0 
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Baseline Model’s  Geometry Modification: 

The previously trained predictive model is used 
A Similarity Factor between the Baseline and 
Modified Model is calculated per DV 

Design Parameter Similarity Factor (%) 

Plate Thickness 1 1.0 

Plate Thickness 2 1.0 

Plate Thickness 3 1.0 

Plate Thickness 4 1.0 

Plate Thickness 5 1.0 

Plate Thickness 6 1.0 

Quick Verification  
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Quick Verification  

Modified geometry with Baseline DVs 

Response Initial Model Predicted  Real Modified 

Mass [kg] 37.56  35.8 35.82 

Num. of damaged cells 68 72 73 

73 damaged cells 

<0.2 

r0 
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Quick Verification  

Same dataset used to train 3D-results  ML Predictor 

Predicted 
Displacement 

Validated 
Displacement 
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o The same predictive model can be used to quickly verify 

o The procedure is completely customizable at every stage,  
 suitable for any other complex problem 

any considerably small modifications of the baseline model 

o A semi-automated Optimization workflow with 

Machine Learning methods has been introduced 

Conclusions  

o The optimal design of an EV side frame is achieved  

by eliminating li-ion batteries hazard & preserving low mass 



www.beta-cae.com 

Stay connected   


