Prediction of Occupant safety utilizing Machine Learning and CARLA Autonomous drive simulation software

Drougkas Dimitrios Kagioglou Panagiota BETA CAE Systems

www.beta-cae.com

Crash tests

Real world crash data

- Collection of data from the field
- Simulate and Correlate data with injury
- Machine Learning models to Predict Injury for a new crash
- Optimize car safety features to act as best as possible to reduce injury
- Machine Learning models to assign optimum values to the

safety features that result in minimum Injury

Process

DOE

ML Training

CARLA

Pre processing

Two car crash

- Rear car velocity, front car stationary
- Dummy (RIGID)
- Seatbelt with sliprings, pre-tentioner and retractor
- Airbag

Crash case with Dummy and airbag

ML Training

CARLA

Optimization

ML Training

Crash case with Dummy and airbag

CARLA

Parametric model

Design Variables

- Velocity (15 to 80 km/h)
- Translation Y (0-605 mm)
- Rotation Z (18 to -18 deg)
- Airbag trigger offset time
- Seatbelt trigger offset time

Post Processing - HIC

Responses

DOE with 35 experiments

- Workflow with Design Variables
- DOE Results

www.beta-cae.com

ML Training

Optimization

ML Training for HIC15

ML Predictor able to predict HIC15 instantly

KPIs to determine Predictor's accuracy

Random crash scenarios generated with CARLA

ML Training

65 scenarios with collisions collecting data regarding

DOE

- Velocity
- Rotation (Yaw)

Parametric FE model

• Translation (Y relative coordinate)

First Actor\Car: Coordinates: (0.0, 0.0, 0.0) (m)

Rotation(Roll, Pitch, Yaw): (-6.103515625e-05, 9.56226431299001e-05, 0.025603188201785088) (deg)

Ego Car:

Coordinates: (-4.489141400073389, **0.0907816611885199**, 0.0005099102854728699) (m) Rotation(Roll, Pitch, Yaw): (0.013231619261205196, -0.05990075692534447, -0.02273559384047985) (deg) Velocity: **69.94589683661746(km/h)**

COLLISION:

Frame: 2444

Frame: 2443

Intensity: 32273.26057267041 N*sec(kg*m/sec)

CARLA

	Parametric FE model	DOE		ML Training	
--	---------------------	-----	--	-------------	--

Optimization of safety features

Random Scenarios prediction of offset times

ML Predictor able to predict the trigger offset times that result in the lowest possible injury instantly

KPIs to determine Predictor's accuracy

www.peta-cae.com

Parametric FE model	DOE	ML Training	CARLA	Optimization	ML Training				
Random Scenarios prediction validation									

Scenario	Input		Output -Prediction			FE Result	Absolute error	
	Rotation Z (Deg)	Translatio n Y (mm)	Velocity (mm/ms)	Airbag offset (ms)	Seatbelt offset (ms)	HIC15	FE HIC15	
1	0	150	13.8	23.2431	28.1003	23.974	29.838	5.864
2	-8	50	22.2	20.2567	27.7276	75.198	85.339	10.140
3	0	0	9	24.1967	27.6094	9.172	5.554	3.618
4	-5	80	12	22.9283	28.033	18.887	14.681	4.206
5	-5.06	259.9	11.4	22.2304	27.7675	17.366	15.542	1.824
6	-16	500	18	25.86.22	27.7982	75.798	90.86	15.062

Summary - Conclusion

- DOE with parametric two car crash case with dummy, seatbelt and airbag.
- Trained Machine Learning Predictors to "replace" solver for simulation results
- Random crash scenarios generated in CARLA based on most common crash cases based on NHTSA
- Predictors used in optimization to identify optimum airbag and seatbelt offset time, minimizing the Head injury criterion for each of the generated crash scenarios
- Trained Machine Learning model to provide optimum airbag and seatbelt offset time values when given a new crash scenario (Velocity, Rotation, overlap)
- Validation shows small difference between predicted HIC and calculated HIC, for the predicted optimum offset times
- ✓ Modern cars could take advantage of such a functionality that can provide the best controls settings customized to the accident while it takes place, aiming to achieve the lowest possible injury

Future work

- Various vehicles (pick up, SUV)
- Image based techniques to simulate cameras or Lidars that identify the vehicles (position and type) in proximity and estimate their velocities.
- Active safety parameters found in modern vehicles, such as Automatic Emergency Brake, Emergency steering, etc.
- Weather conditions
- Head on, or barrier collisions

