
 
 

 

 

 

 

  

 

 

Employing Machine Learning  
for front crash responses 
prediction 
 

Front crash is one of the most common finite element analyses 

during vehicle development. The Machine Learning functionality 

implemented in KOMVOS can be trained to predict the behavior of 

theoretical designs in a front crash, without running the full FE 

analysis. This enables the performance of multiple “what-if” 

studies without requiring the otherwise additional design and 

solver run time. 
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Introduction 

One of the most common finite element analyses in vehicle development is the front crash 

simulation (Figure 1). This test is important as it simulates a very probable and dangerous real 

case scenario. In such an impact, the vehicle’s structural parts that absorb most of the impact 

energy are the front rails (Figure 2).  

 

The thickness of the front rails plays a significant role on the general behavior of the vehicle in 

the front crash case. To investigate the effect of the thickness, a Design of Experiments (DOE) 

analysis is set up using the ANSA optimization tool with design variables defined to modify 

thickness values. 

 

These experiments and their responses are used to build a dataset that will train Machine 

Learning predictive models. Then, by employing the Machine Learning functionality, 

implemented in KOMVOS, we can predict the behavior and key values such as maximum 

intrusions or accelerations, without the need to run the full FE analysis. This enables the 

investigation of multiple “what-if” studies eliminating further analysis and design time.  

  

Figure 1: RH Front crash Figure 2: Vehicles’ front rails 



 

 
 
 
 
 
 
 

physics on screen 

Model Parameterization 

 

For this study, six parameters that modify the thickness of front rails’ specific parts have been 

defined. These parts were then split into symmetrical segments for which parameters were 

created. 

 

 
Figure 1: Symmetrical parts with thickness parameters 

 
For each one of these thickness parameters, design variables with specific bounds were 

defined to create an Optimization task with six design variables (Figure 4).  

 

 
Figure 2: The Optimization task 
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Dataset creation 
 

Pre-Processing 

 

Through the Optimization tool’s workflow, several experiments were produced to form the 

Machine Learning dataset using the Uniform Latin Hypercube DOE algorithms. 60experiments 

were created each with different values in the design variables, forming a dataset with 

sufficient spread in the design space (Figure 5). 

 

 
Figure 3: Design of Experiments table 

 

The DOE process created the 60 designs and run the analysis for each. The created data were 

then saved in a DM container system with a specific structure and hierarchy. The DM system 

can be handled through ANSA or KOMVOS.  

The created structure consists of a main Simulation model at the top of the tree structure and 

contains the DOE studies and the Parametric Structure. The DOE Studies contain the created 

experiments as Simulation runs, each including the experiment’s information, results, and 

design variable details. The Parametric structure holds all the information relating to the 

parameterization of the Simulation model. 
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Post Processing 

 

Post processing was also performed for all experiments using a session file, to extract curves, 

pictures, videos, and the important key values required for the Machine Learning procedures. 

 

 
Figure 4: FE Crash analysis results 

 

The post processing findings were automatically added as report items in each simulation run 

(Figures 7, 8).  

Each of the Simulation runs contains key values for the selected accelerations and intrusions 

at various points on the vehicle. These key values can be used as responses to train the 

Machine Learning models. 

 

 
Figure 5: Key values of simulation runs 
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Figure 6: Simulation run reports in KOMVOS 
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Machine Learning Training 
 

Using the design variable-based Machine Learning option (ML Train), and the 60 available 

simulation runs, a group of predictive models was trained to calculate the maximum intrusion 

at specified measurement points of the vehicle (A pillar base, footwell, toepan, and tunnel). 

Similarly a group was also trained to predict the maximum acceleration on the driver’s seat 

fixation points (Figure 9). The predictor entities calculate these specific key values based on 

any design variables values, avoiding the use of solver runs and thus eliminating the time 

needed to run the solution. 

 

  
Figure 7: Intrusion measurement (left), Acceleration measurement (right) 

 

Each predictor contained report charts showing performance and sensitivity of design 

variables. The charts in Figures 10 and 11 depict the design variables that have the largest 

effect on the response values. This chart is essential to reach to a better performing design.  

 

  
Figure 8: Predictive models and DV Sensitivity chart for A-pillar intrusion predictor 
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Figure 9 Predictive models and DV Sensitivity chart for Acceleration at seat fixation 

 

Machine Learning Prediction 
 

Utilizing the parallel coordinate chart, it was possible to filter and identify the experiments with 

the lowest maximum acceleration values and respective intrusion values at all the 

measurement points (Figure 12, 13). 

 

 
Figure 10: Identification of lowest RH EAP Displacement experiment 
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Figure 11: Identification of lowest maximum plastic strain experiment 

 

As expected, experiments with lower acceleration measurements had higher intrusion values 

at the areas of interest. The design variables of the identified experiment (24) were used as 

initial values to define “what-if” scenarios.  

Based on the information of the importance maps of each predictor (Figures 14-17), it was 

clear that the design variables FrontRail2, FrontRail3 and FrontRail4 are affecting the intrusions 

and accelerations the most.  

 

 
Figure 12: Tunnel intrusion DV importance map  

 
Figure 13: Toepan intrusion DV importance map 
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Figure 14: Footwell intrusion DV importance map 

 
Figure 15: A Pillar intrusion DV importance map 

 

With this information, we could filter design variable values and then apply theoretical values 

to create more “what-if scenarios” .The target was to identify design variable values and 

achieve a tradeoff between low acceleration values and low intrusion values. 

 

 
Figure 16: Intrusions for experiment 24 
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Utilizing the “My Experiments” list of the parallel coordinates chart it was possible to specify 

design variable values for each design variable and predict the respective key values for 

intrusions and accelerations. The goal was to try some design variable values and identify a 

combination that would improve intrusion values without affecting accelerations too much. 

Experiment 0001 in the “My Experiments” list was the experiment 24, added for comparison 

(Figure 18). 

 

 
Figure 17: Accelerations prediction for theoretical experiment 0002 
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Figure 18: Intrusions prediction for theoretical experiment 0002 

 

After modifying the design variable values based on the importance maps (Figures 14-17), the 

predictions for accelerations were acceptable (Figure 19) however intrusion for toepan area 

was increased (Figure 20). A new what-if scenario was created, adding different values in my 

experiments list, to create new predictions.  
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Figure 19: Accelerations prediction for theoretical experiment 0003 

 

For the second “what-if” scenario, the predicted acceleration values were similar to the original 

accelerations of experiment 24 (Figure 21). However intrusions were decreased for all 

measured areas, which was the goal of this analysis (Figure 22).    
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Figure 20: Intrusions prediction for theoretical experiment 0003 

 

This “what-if” scenario was a good candidate and was added in the DM through an automated 

process, starting from this prediction. ANSA was automatically deployed and the selected 

design variable values were applied on the original model. The analysis was done and the new 

Simulation run was added in the DM. 
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Validation 

 

The theoretical experiment created from a “what-if” scenario, was added in the DM along with 

the analysis results as a validation simulation run. A post processing session automatically 

extracted the respective reports and key values. Key values are directly compared in KOMVOS. 

 

 
Figure 21: Predicted and Analysis KeyValues of validation Simulation Run 
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 Analysis 

result 

Prediction Error (%) 

Intrusion A pillar (𝑚𝑚) 0.9896778 0.95158 3.9% 

Intrusion footwell (𝑚𝑚) 42.13635 47.81533 12.6% 

Intrusion toepan c (𝑚𝑚) 57.060 59.8366 4.7% 

Intrusion tunnel (𝑚𝑚) 14.58201 14.67978 0.9% 

    

Acceleration Seat front left 

(𝑚𝑚/𝑠2) 
7552044.5 7467200.749 1.1% 

Acceleration Seat front right 

(𝑚𝑚/𝑠2) 
7318835.5 8661342.267 16.8% 

Acceleration Seat rear left 

(𝑚𝑚/𝑠2) 
4885381 5584786 13.3% 

Acceleration Seat rear right 

(𝑚𝑚/𝑠2) 
3553885.75 4048399.234 13.0% 

Acceleration zone 1 (𝑚𝑚/𝑠2) 14815225 13276634.988 10.9% 

    
Table 1: Validation of predictions 

 

The predictions for intrusion values at all points of measurement had relatively small error and 

all predictions were within the Mean Absolute Error of the predictor (MAE) given in the 

predictor’s reports and within the confidence bounds of each prediction.  

Figure 24 shows the intrusions for all measuring points for the initial model (top) and the 

validation model. 
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Figure 22: Initial model intrusions (top), Validation model intrusions (bottom) 
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3D Results 
 

To predict 3D field scalar results, new predictors were trained, using 20 of the available 

experiments. For 3D results the prediction was made on the displacements and plastic strain 

(3 through thickness integration points (3ips)), for all the time steps providing an animation of 

the entire process. The prediction was done automatically after selecting values for the design 

variables and was visible in the embedded results viewer. The 3d field results prediction 

achieved almost identical to the validation FE analysis result (Figure 25, 26) 

 

 
Figure 23: Displacements FE Results (left), Prediction (right)  

 

 
Figure 24: Displacements overlay at 40ms and 80ms 
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The following pictures show predictions of plastic strain values (ip1) compared with the 

respective FE Analysis results. The ML algorithm managed to predict plastic strain values 

providing very similar to the FE Analysis results. 

 
Figure 25 Front Sub-frame Plastic strain ip1 FE Results (left), Prediction (right) 

 

 
Figure 26 Plastic strain ip1 FE Results (left), Prediction (right) 
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Figure 27 Front-bumper bar Plastic strain ip1 FE Results (left), Prediction (right) 

2D Results 
 

To predict 2D curve/plot entities, new predictors were trained, using 20 of the available 

experiments. For the scenario mentioned and validated above (Table 1), the predictions for 

some of the available curves are presented in Figures 30-32. 

 

Figure 28 A-Pillar section force Fe Results (blue) vs Prediction (red) plot 
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Figure 29 Left hand side Front Rail Section force FE Results (blue) vs Prediction (red)  

 

Figure 30Material Internal Energy FE Results (blue) vs Prediction (red) 
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Conclusion 

 

In this study, predictive models were defined using the Machine Learning tool of KOMVOS, to 

predict the intrusion displacements and the accelerations at specific locations of the vehicle. 

The initial training dataset was created using the ANSA Optimization tool that produced the 60 

experiments to run the FE analysis. The data was then added in a DM system while the training 

and creation of the predictive models was performed in KOMVOS. 

 

Utilizing the predict window’s parallel coordinates chart and the design variable sensitivity 

maps; it was possible to apply design variable values exploratory and predict the max 

intrusions and accelerations in seconds. A selected design variable value configuration was 

used to create a new simulation run and save it in the Data Management system for validation 

of the predictions. The training and prediction times per results are listed in Table 2. 

 

Result Training time Prediction time  

Key Value 3~4 minutes 10-12 seconds 

2D 30~40 minutes 2~3 minutes 

3D 1~1.5 hours 5~7minutes 

 

Table 2 Machine learning training and prediction time per result. 

 

2d plots and 3d field scalar predictors were also created based on 20 of the existing 

experiments. The selected design variable values were also used to predict 2D and 3D results, 

and the predictions were validated against the FE result. 

Validation results show good accuracy between predictions and FE results for all types (key 

values, 2d and 3D results), considering the number of experiments and design variables. 

 

The Machine Learning functionality implemented in KOMVOS offers high prediction accuracy 

for “what-if” studies saving significant time over the FE analysis. Combined with the 

Optimization tool of ANSA and post processing capabilities of META, KOMVOS provides 

powerful tools to create a dataset, train Machine Learning algorithms, and create predictive 

models.  
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