
 
 

 

 

 

 

  

 

 

Occupant Safety Prediction  
 

One of the most common finite element analyses in vehicle 

development is designed to study the passengers’ safety during a 

front crash using a sled test. Machine Learning functionality can 

predict the model’s behavior and key values such as injury criteria 

or body parts’ accelerations, without the need of running the full FE 

analysis. Thus, multiple “what if” studies can be performed without 

the expense in analysis and design time. 
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1. Introduction 

 

One of the most common finite element analyses in vehicle development is the study 

passengers’ safety during a front crash using a sled test (Figure 1). This study simulates the 

interaction between the passenger and the vehicle during such an accident and the actual 

consequences on the human body.  

 

 
Figure 1 Sled test configuration 

 

The test case involves a sled test with a restraint system (including an airbag and seatbelt) and 

the occupant represented by the THOR-50M Anthropomorphic Test Device (ATD). (Figure 2). 

The simulation of the vehicle-human interaction during such an accident and its actual 

consequences on the human body are used to train Machine Learning models and predict the 

occupant’s safety.  

The study focuses on the effect of the various restraint systems’ parameters on the occupant’s 

injury criteria. Design variables were defined to control crucial characteristics of the airbag and 

the restraint system that affects the ATD’s kinematics, to investigate the effects of seatbelt and 

airbag’s parameters on occupant’s injury criteria (e.g HIC_15/36, BRIC, upper body parts’ 

acceleration and load absorption etc.). A Design of Experiments (DOE) provided us with the 

dataset that Machine Learning can utilize.  
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Figure 2 Restraint system and dummy’s parameters 

 

The trained Machine Learning models can predict the FE model's behavior and key values, such 

as maximum accelerations or deformations, without the need to run the full FE analysis. This 

capability enables multiple "what if" studies, saving time and resources in analysis and design 

processes. Additionally, such trained predictive models are used for optimization purposes as 

response surface models, increasing the optimization speed and achieving improved designs 

faster. 

 

2. Model Parameterization 

 

Four parameters were defined on the FE model to control a) the seatbelt’s slipring position along 

the Z-axis (Figure 3), b) the friction coefficient between the seatbelt and the dummy, c) the 

airbag’s venting trigger time and d) the seatbelt’s sensor trigger time.  

Figure 3 The slipring’s position parameter 



 

 
 
 
 
 
 
 

physics on screen 

An Optimization Task (Figure 4) was created using ANSA’s Optimization Tool with design 

variables for each of the previously created parameters. Specific bounds and values’ type were 

assigned to these design variables to permit the correct fluctuation of the design parameters’ 

values. 

 

Figure 4 Optimization task 
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3. Dataset creation 

 

3.1. Pre-Processing 

 

To create the dataset that was used for training the Machine Learning models, a Design of 

Experiments (DOE) was defined using the Optimization tool (Figure 5). The “Uniform Latin 

Hypercube” DOE Algorithm was selected to generate 25 experiments in total. The algorithm’s 

nature drives the equal distribution of the experiments’ values within the design space that is 

defined by the design variables’ bounds. For every experiment, different values were calculated 

for each design variable, providing a good coverage of the available space. 

 

 
Figure 5 Design of Experiments table 

 

Once the DOE process was properly defined the FE model LSDYNA analysis run with the values 

of each of the 25 experiments in a completely automated procedure. The created data were 

saved in a DM container system with specific structure and hierarchy. 

The tree structure created in the DM by this process consists of a main Simulation model top 

that contains two other entities, the DOE Studies and the Parametric Structure. The DOE Studies 

include the created experiments as Simulation runs, each containing the experiment’s 

information, results and design variables’ details. The Parametric Structure contains all the 

information concerning the parameterization of the Simulation model. 
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3.2. Post Processing 

 

The post processing (Figure 6) was done massively for all experiments using a session file, 

which was read by META during the automated run of the DOE process. All necessary data that 

would be needed for the Machine Learning actions including results, curves, pictures, videos and 

the important key values were extracted and saved in the DM. 

 

 
Figure 6 FE analysis results regarding airbag-passenger interaction 

 

The information gathered during the post processing was automatically added as separate 

Report items under each Simulation Run (Figure 7, Figure 8).  

In these Report items, all of the requested key values can be found regarding occupant’s injury 

criteria and upper body parts’ accelerations and deformations. These key values were used as 

responses for the training of the Machine Learning models. 
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Figure 7 Key Values of Simulation Runs. 

 

 

 

 

Figure 8 Simulation Run reports in KOMVOS 
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4. Machine Learning Training 

 

The ‘Design Variable based’ Machine Learning was selected as the training method in KOMVOS, 

using the 25 available Simulation Runs to train a group of predictive models in order to generate 

predictions for the above-mentioned key values. Different groups of predictors (Figure 9) are 

defined for the different categories of responses, listing each predictor that corresponds to a 

single key value. Using a predictor entity, provides the direct prediction of the respective key 

value, based on any configuration of design variables’ values. Thus, the prediction of a model’s 

response can be done much faster than the actual FE analysis, leading to a significant decrease 

in the computational time. 

Along with predictors trained with key values, 2D and 3D results predictions were also trained 

using the existing results from the dataset. A predictor for Displacements was trained for 3D 

results and a predictor group was trained for various 2D results like Kinetic energy, Total energy 

and accelerations curves of several nodes of the ATD (head, sternum etc.) 

 

Figure 9 Groups of predictive models  

 

Each predictor contained report charts evaluating its accuracy based on test data, along with 

charts about the performance and sensitivities of the design variables. The following charts 

(Figure 10, Figure 11) list the design variables in order of greater influence regarding two of the 
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responses. This chart is considered essential in the search for a better performing design as it 

highlights the design variables that will affect the behavior the most, should they be modified. 

 

 

Figure 10 Sensitivity chart for HIC_15 

 

 

Figure 11 Sensitivity chart for HIC_36 

5. Machine Learning Prediction 
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The HIC_15, HIC_36 and BRIC injury criteria were selected as the main responses for 

identifying the best experiment among the 25 simulation runs. This was the basis for creating 

a new ‘what if’ scenario. For this purpose, the parallel coordinates chart was used to visualize 

the design variables and key values of all runs simultaneously and distinguish the better 

performing experiments according to their key values.  (Figure 12, Figure 13). 

 

 
Figure 12 Experiment’s identification with the lowest HIC_15 value 
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Figure 13 Experiment’s identification with the lowest BRIC value 

 

The simulation run 17 resulted in the lowest values of both HIC_15 and HIC_36, while the BRIC 

criterion was also kept low. The values of the rest of the responses were also checked for this 

experiment whether they lied within the lower values’ ranges. Therefore, the design variables of 

the identified experiment (Exp017) were used as initial values in order to define a new “what if” 

scenario.  

Based on the information provided by the importance maps, each predictor was affected by a 

different design variable the most. Thus, it was decided to primarily try reducing the HIC and 

BRIC criteria that are affected mainly by the dummy-seatbelt friction, the seatbelt sensor time 

and the slipring’s position (Figure 14, Figure 15). 
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Figure 14 HIC_15 DV importance map 

  

 
Figure 15 HIC_36 DV importance map 

 
 

With this information, we could filter which design variables should be tuned in order to give 

improved responses’ values. So, new theoretical values were given to those variables to create 

several ‘what if’ scenarios. The final target was to distinguish one theoretical experiment that 

would achieve a trade-off among improved values for the HIC and BRIC criteria while keeping 

the other measurements on safe levels. 
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The “My Experiments” table of the grouped parallel coordinates chart was utilized, to perform 

the ‘what if’ scenarios. Predictions for the new experiments were ran directly from this area, so 

the new key values were listed in the table and also added to the chart (Figure 16). 

 

 

 
Figure 16 HIC & BRIC prediction for theoretical experiment 0001 
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The first theoretical experiment resulted in higher HIC_36 values, so there was room for further 

improvement. Further decrease of the seatbelt sensor time (Figure 17) led to further decrease 

of both the HIC criteria, while the BRIC criterion remained within a logically low range.  

 
Figure 17 HIC_36 & HIC_15 predictions for theoretical experiment 0002 

 

Such “what if” scenarios were conducted in order to quickly get the various injury criteria and 

intrusion responses without running the full analysis. Similar to single key value responses, 

displacements and 2D results were predicted, to enrich the design exploration.  
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6. Optimization 

The created predictors were used in an Optimization study, in order to find the optimum design 

concerning injury criteria. The predictors were used as response surface models, speeding up 

the optimization progress by quickly predicting the desired responses. The objective of this 

problem was to minimize the HIC15 value. For this optimization setup, the Simulated Annealing 

optimization algorithm was selected and the BRIC and HIC 36 were constrained to specific limits 

(Figure 18).  

 
Figure 18 Optimization set up 

The optimization ran for a few minutes since the prediction for the injury criteria for each 

iteration took a few seconds. After 500 iterations (Figure 19) the optimum design was 

obtained and succeeded in reducing the HIC 15 response while the HIC 36 and BRIC responses 

were constrained to acceptable low limits. 
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Figure 19 Optimization results 

 

 Initial Optimum 

HIC 15 132.365 101.541 

HIC 36 165.047 159.096 

BRIC 0.534 0.5674 
Table 1 Optimum design predicted injury criteria 

 

 

7. Validation 

 

An LSYDYNA FE Analysis ran for the design variables of the optimum design. The experiment 

and its FE results and respective post processing reports were added in the DM as a validation 

simulation run (Figure 20).  
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Figure 20 Predicted key values of the validating Simulation Run 

 

The predictions for the HIC_15, HIC_16 and BRIC values gave a relatively small error, while all 

predictions remained within the Mean absolute Error of the Predictor (MAE) given in the 

predictor’s reports and within the confidence bounds of each prediction. 

 

 

 

 

 

  Analysis result Prediction Error 

HIC_15 102.026 101.541 0.47% 
HIC_36 158.489 159.096 0.38% 
BRIC  0.5297 0.5674  6.87%  
Dummy measurements    
Head acceleration (𝐦𝐦) 38.905 38.5627 0.88% 
Left clavicle inboard load cell(𝐤𝐍) 1.3762 1.3916 1.11% 
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Right clavicle inboard cell(𝐤𝐍) 1.204 1.26 4.54% 
Upper neck nij 0.3988 0.4022 0.84% 
Thorax rib LL (𝐦𝐦) 59.148 58.401 1.27% 
Thorax rib LR (𝐦𝐦) 17.603 17.126 2.74% 
Thorax rib UL(𝐦𝐦) 65.597 66.321 1.09% 
Thorax rib UR(𝐦𝐦) 43.722 43.421 0.69% 

Table 2 Validation of predictions 

 

 Initial Optimum Reduction 

HIC 15 132.365 102.026  22.92% 

HIC 36 165.047 158.489 3.97% 

BRIC 0.534 0.5297 0.8% 
Table 3 FE Analysis Optimum results 
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8. 3D Results 

 

Displacements and other scalar values of theoretical experiments were predicted simply by 

selecting values for the design variables. The prediction was realized for all time steps of the 

sled test simulation, so an animation of the entire process was available in the embedded 

META Results Viewer. The accuracy of the predicted 3d field results was quite high since they 

had a small deviation in comparison to the computed results of the FE validation model 

(Figure 21). 

 

Figure 21 Overlay of FE & prediction displacements results in 2 different times 

 

The pictures above show an overly between the predicted displacements as computed by the 

ML algorithm and the respective FE analysis results. It can be seen that the predicted values are 

close to the ones from original FE model, a clear indication that the predictor was subjected to 

a satisfactory training and provided accurate results. 
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9. 2D Results 

 

2D history curve results such as acceleration magnitude of different body parts, kinetic and total 

energy, forces etc., were also predicted for all states. The design variables of the validating 

optimum experiment were used in order to predict various 2D curves that were also validated 

with the respective plots of the original FE model (Figure 22, Figure 2, Figure ). 

 

 

 

 

 

 

 

Figure 22 Kinetic Energy results of the FE model vs prediction model 
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Figure 4 Head acceleration results of the FE model vs prediction model 

Figure 233 Middle sternum results of the FE model vs prediction model 



 

 
 
 
 
 
 
 

physics on screen 

10. Conclusion 

 

In this study, predictive models were created using the Machine Learning tool of KOMVOS, to 

predict values based on injury criteria and various other dummy body measurements during a 

sled test that included an occupant, a seatbelt and an airbag. A DOE study was set using ANSA’s 

Optimization Tool to get the initial training dataset. The study included 25 experiments that were 

solved with the LS-DYNA FE solver. All data was then added in a DM system that can be 

manipulated through KOMVOS, where the training of the predictive models would take place. 

Utilizing the prediction’s parallel coordinates chart and design variable sensitivity plots, it was 

possible to come up with different exploratory ‘what if’ scenarios and apply the respective design 

variable values to predict the specified key values in seconds. An Optimization study was ran 

using the trained predictor as a response surface, quickly resulting in finding the optimum 

design. An FE Analysis was run for the optimum design to validate the occupant criteria 

predictions.  

In addition, predictors were trained to predict 2D plots and 3D field scalar results that were also 

validated against the respective results of the FE Analysis. 

The Machine Learning functionality implemented in KOMVOS offers prediction capabilities of 

high accuracy for CAE “what if” studies. Combined with the Optimization tool of ANSA and the 

post processing capabilities of META, KOMVOS provides powerful tools including capabilities 

to create a dataset, train Machine Learning algorithms, create predictive models, and run 

optimization studies in a fraction of the actual FE solution time. Results overview and 

comparison of the Simulation runs, DOE Studies, predictions of results for theoretical runs and 

creation of new experiments through the KOMVOS interface allows for an efficient design 

exploration.  
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BETA is a simulation solutions provider, dedicated to the development 
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