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One of the most common finite element analyses in vehicle
development is designed to study the passengers’ safety during a
front crash using a sled test. Machine Learning functionality can
predict the model’s behavior and key values such as injury criteria
or body parts’ accelerations, without the need of running the full FE
analysis. Thus, multiple “what if” studies can be performed without
the expense in analysis and design time.
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1. Introduction

One of the most common finite element analyses in vehicle development is the study
passengers’ safety during a front crash using a sled test (Figure 1). This study simulates the
interaction between the passenger and the vehicle during such an accident and the actual
consequences on the human body.

Figure 1 Sled test configuration

The test case involves a sled test with a restraint system (including an airbag and seatbelt) and
the occupant represented by the THOR-50M Anthropomorphic Test Device (ATD). (Figure 2).
The simulation of the vehicle-human interaction during such an accident and its actual
consequences on the human body are used to train Machine Learning models and predict the
occupant’s safety.

The study focuses on the effect of the various restraint systems’ parameters on the occupant’s
injury criteria. Design variables were defined to control crucial characteristics of the airbag and
the restraint system that affects the ATD’s kinematics, to investigate the effects of seatbelt and
airbag’s parameters on occupant’s injury criteria (e.g HIC_15/36, BRIC, upper body parts’
acceleration and load absorption etc.). A Design of Experiments (DOE) provided us with the
dataset that Machine Learning can utilize.
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Figure 2 Restraint system and dummy’s parameters

The trained Machine Learning models can predict the FE model's behavior and key values, such
as maximum accelerations or deformations, without the need to run the full FE analysis. This
capability enables multiple "what if" studies, saving time and resources in analysis and design
processes. Additionally, such trained predictive models are used for optimization purposes as
response surface models, increasing the optimization speed and achieving improved designs
faster.

2. Model Parameterization
Four parameters were defined on the FE model to control a) the seatbelt’s slipring position along

the Z-axis (Figure 3), b) the friction coefficient between the seatbelt and the dummy, c) the
airbag’s venting trigger time and d) the seatbelt’s sensor trigger time.

Figure 3 The slipring’s position parameter
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An Optimization Task (Figure 4) was created using ANSA’s Optimization Tool with design
variables for each of the previously created parameters. Specific bounds and values’ type were
assigned to these design variables to permit the correct fluctuation of the design parameters’
values.
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Figure 4 Optimization task
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3. Dataset creation
3.1. Pre-Processing

To create the dataset that was used for training the Machine Learning models, a Design of
Experiments (DOE) was defined using the Optimization tool (Figure 5). The “Uniform Latin
Hypercube” DOE Algorithm was selected to generate 25 experiments in total. The algorithm'’s
nature drives the equal distribution of the experiments’ values within the design space that is
defined by the design variables’ bounds. For every experiment, different values were calculated
for each design variable, providing a good coverage of the available space.

> Optimization Tool BEE
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Design variables Experiments
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[ I DN 11.6666666667 0.45| 10.3333333333 20.83333
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Post-Processing 17 6.6666666667 0.6 12. 13.33333
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Directory prefix: | DOE_Run_ &l I [v]
Experiment prefix: | Exp -
- P> Start [+
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Figure 5 Design of Experiments table

Once the DOE process was properly defined the FE model LSDYNA analysis run with the values
of each of the 25 experiments in a completely automated procedure. The created data were
saved in a DM container system with specific structure and hierarchy.

The tree structure created in the DM by this process consists of a main Simulation model top
that contains two other entities, the DOE Studies and the Parametric Structure. The DOE Studies
include the created experiments as Simulation runs, each containing the experiment’s
information, results and design variables’ details. The Parametric Structure contains all the
information concerning the parameterization of the Simulation model.
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3.2. Post Processing

The post processing (Figure 6) was done massively for all experiments using a session file,
which was read by META during the automated run of the DOE process. All necessary data that
would be needed for the Machine Learning actions including results, curves, pictures, videos and
the important key values were extracted and saved in the DM.

Figure 6 FE analysis results regarding airbag-passenger interaction

The information gathered during the post processing was automatically added as separate
Report items under each Simulation Run (Figure 7, Figure 8).

In these Report items, all of the requested key values can be found regarding occupant’s injury
criteria and upper body parts’ accelerations and deformations. These key values were used as
responses for the training of the Machine Learning models.
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Figure 7 Key Values of Simulation Runs.
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Figure 8 Simulation Run reports in KOMVOS
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4. Machine Learning Training

The ‘Design Variable based’ Machine Learning was selected as the training method in KOMVOS,
using the 25 available Simulation Runs to train a group of predictive models in order to generate
predictions for the above-mentioned key values. Different groups of predictors (Figure 9) are
defined for the different categories of responses, listing each predictor that corresponds to a
single key value. Using a predictor entity, provides the direct prediction of the respective key
value, based on any configuration of design variables’ values. Thus, the prediction of a model’s
response can be done much faster than the actual FE analysis, leading to a significant decrease
in the computational time.

Along with predictors trained with key values, 2D and 3D results predictions were also trained
using the existing results from the dataset. A predictor for Displacements was trained for 3D
results and a predictor group was trained for various 2D results like Kinetic energy, Total energy
and accelerations curves of several nodes of the ATD (head, sternum etc.)
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Figure 9 Groups of predictive models

Each predictor contained report charts evaluating its accuracy based on test data, along with
charts about the performance and sensitivities of the design variables. The following charts
(Figure 10, Figure 11) list the design variables in order of greater influence regarding two of the

physics on screen




responses. This chart is considered essential in the search for a better performing design as it
highlights the design variables that will affect the behavior the most, should they be modified.
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Figure 11 Sensitivity chart for HIC_36
5. Machine Learning Prediction
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The HIC_15, HIC_36 and BRIC injury criteria were selected as the main responses for
identifying the best experiment among the 25 simulation runs. This was the basis for creating
a new ‘what if’ scenario. For this purpose, the parallel coordinates chart was used to visualize
the design variables and key values of all runs simultaneously and distinguish the better
performing experiments according to their key values. (Figure 12, Figure 13).
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Figure 12 Experiment’s identification with the lowest HIC_15 value
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Figure 13 Experiment’s identification with the lowest BRIC value

The simulation run 17 resulted in the lowest values of both HIC_15 and HIC_36, while the BRIC
criterion was also kept low. The values of the rest of the responses were also checked for this
experiment whether they lied within the lower values’ ranges. Therefore, the design variables of
the identified experiment (Exp017) were used as initial values in order to define a new “what if”
scenario.

Based on the information provided by the importance maps, each predictor was affected by a
different design variable the most. Thus, it was decided to primarily try reducing the HIC and
BRIC criteria that are affected mainly by the dummy-seatbelt friction, the seatbelt sensor time
and the slipring’s position (Figure 14, Figure 15).
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With this information, we could filter which design variables should be tuned in order to give
improved responses’ values. So, new theoretical values were given to those variables to create
several ‘what if’ scenarios. The final target was to distinguish one theoretical experiment that
would achieve a trade-off among improved values for the HIC and BRIC criteria while keeping
the other measurements on safe levels.
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The “My Experiments” table of the grouped parallel coordinates chart was utilized, to perform
the ‘what if’ scenarios. Predictions for the new experiments were ran directly from this area, so
the new key values were listed in the table and also added to the chart (Figure 16).

DV Based Prediction ]
‘ Details | DV Based Prediction | DV Based Prediction I References | Changeset | META Results Viewer

Design Variable based Predictor

DV based predictor_Injury_Criteria_001_BRIC

DV based predictor_Injury_Criteria_001 _HIC_15

DV based predictor_Injury_Criteria_001_HIC_36

06+ 20 4

@
=}
J

w
E 5 £ £ H o 2
2 ] i @ 1404 Q Q
by, & H $ 058 - z z
> . 2 2
§ g 104 i' g 170
0548 0-a 25 E
=
2 H
g H 0:56 - 130
3 8
165 -
04 0 204
054 4
6 120 -
160
03 10 154 .
4 052 o
1104
155 4
02 204 2 10-
] Seatbet_dum . S¥png_pose... | pab_vorl_ime | seatbek_sens. | BRI HIC_15 HIC_36 +- Vanance +- Varance <~ Vamance
Exp001 0.55 5 241867 10 0.55779 110,107 161.535 0 0 0 =
Exp002 0216667 8.33333 6.58333 14.1667 0.57544 142.799 172184 0 0 0
Expd03 0.583333 15 5.33333 258333 1nene 166.385 0 0 0
Exp004 0533333 11,6667 28333 15 108816 a2 0 0
Exp005 03 20 491867 21.6667 129 557 171.248 0 0 1]
ExpO0¢ 02 10 9082333 20 0 51859 136075 163.19 0 0 0 :
MyExpO001 06 <20 172 30 0.5537 107.186 166.726 0.022¢ 44416 54821 '§
My Experiments
=
. Seatbelt_dummy._friction | Slipring_position pab_vent_time seatbelt_sensor_time “
I
lteration 15> 0.6 (-20.0-20.0) (2.0-12.0) (10.0-30.0) BRIC HIC_15 HIC_36
0001 06 20 12 30 1 05.. 107.1.. 1667, |

Figure 16 HIC & BRIC prediction for theoretical experiment 0001
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The first theoretical experiment resulted in higher HIC_36 values, so there was room for further
improvement. Further decrease of the seatbelt sensor time (Figure 17) led to further decrease
of both the HIC criteria, while the BRIC criterion remained within a logically low range.
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Figure 17 HIC_36 & HIC_15 predictions for theoretical experiment 0002

Such “what if” scenarios were conducted in order to quickly get the various injury criteria and
intrusion responses without running the full analysis. Similar to single key value responses,
displacements and 2D results were predicted, to enrich the design exploration.
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6. Optimization

The created predictors were used in an Optimization study, in order to find the optimum design
concerning injury criteria. The predictors were used as response surface models, speeding up
the optimization progress by quickly predicting the desired responses. The objective of this
problem was to minimize the HIC15 value. For this optimization setup, the Simulated Annealing
optimization algorithm was selected and the BRIC and HIC 36 were constrained to specific limits
(Figure 18).

Results }
Name ‘Value
. Name Minimize_HIC15
Iteration 001
Algorithm Simulated Annealing
Method RSM
- DOE
= DV
- Seatbelt_dummy_friction
Initial Value 0.6
Max Value 0.6
Min Value 0.2
- Slipring_position
Initial Value 6.6666666667
Max Value 20
Min Value -20
- pab_vent_time
Initial Value 12.
Max Value 12
Min Value 2
- seatbelt_sensor_time
Initial Value 13.3333333333
Max Value 30
Min Value 10
- Optimization
= Constraints
Constraint_1 HIC_36 < 170
Constraint_2 BRIC < 0.58
=- Objectives
Objective_1 HIC_15 Minimize

Figure 18 Optimization set up

The optimization ran for a few minutes since the prediction for the injury criteria for each
iteration took a few seconds. After 500 iterations (Figure 19) the optimum design was
obtained and succeeded in reducing the HIC 15 response while the HIC 36 and BRIC responses
were constrained to acceptable low limits.
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Figure 19 Optimization results

Initial Optimum
HIC 15 132.365 101.541
HIC 36 165.047 159.096
BRIC 0.534 0.5674

Table 1 Optimum design predicted injury criteria

7. Validation

An LSYDYNA FE Analysis ran for the design variables of the optimum design. The experiment
and its FE results and respective post processing reports were added in the DM as a validation
simulation run (Figure 20).
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REYVAINES] C]C][:]
foo
A B c D E F G H [<]
1 | KeyValue
2 |BRIC 0.52979
3 |HIC_15 102.026
4 HIC_36 158.489
5  T12_acceleration_res 439326
6 | T12_acceleration_x 431728
7 | T12_acceleration.y 17.9034 =l
8 |T12_acceleration_z 22,4047
9 | Tl_acceleration_res 64.9958
10 Tl_acceleration_x- -61.9700
11 | Tl_acceleration_x 17.8401
12 | T1l_acceleration_y- -18.9245
13 Tl_acceleration_y 15.8590
14 Tl_acceleration_z- -12.5623
15 | Tl_acceleration_z 25.1089
16 | T4_acceleration_res 40.6004
17 T4_acceleration_x- -40.5395
18 | T4_acceleration_x 15.8397
19 T4_acceleration_y- -12.2415
20  T4_acceleration_y 8.00223
21 T4_acceleration_z- -19.1717
22 | T4_acceleration_z 7.10635
23 T4_angular_velocity_res 0.58808
24 | T4_angular_velocity_x 0.33923
25 |T4_angular_velocity_y 047784
26 | T4_angular_velocity_z 0.41968
27  head_acceleration_3msclip 36.0516
[2% head_acceleration_res 33‘905‘7 : ]z
4 »
KeyValues / T O =Tt

Figure 20 Predicted key values of the validating Simulation Run

The predictions for the HIC_15, HIC_16 and BRIC values gave a relatively small error, while all
predictions remained within the Mean absolute Error of the Predictor (MAE) given in the
predictor’s reports and within the confidence bounds of each prediction.

Analysis result Prediction Error
HIC_15 102.026 101.541 0.47%
HIC_36 158.489 159.096 0.38%
BRIC 0.5297 0.5674 6.87%
Dummy measurements
Head acceleration (mm) 38.905 38.5627 0.88%
Left clavicle inboard load cell(kN) 1.3762 1.3916 1.11%
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Right clavicle inboard cell(kN) 1.204 1.26 4.54%
Upper neck nij 0.3988 0.4022 0.84%
Thorax rib LL (mm) 59.148 58.401 1.27%
Thorax rib LR (mm) 17.603 17.126 2.74%
Thorax rib UL(mm) 65.597 66.321 1.09%
Thorax rib UR(mm) 43.722 43.421 0.69%
Table 2 Validation of predictions
Initial Optimum Reduction

HIC 15 132.365 102.026 22.92%
HIC 36 165.047 158.489 3.97%

BRIC 0.534 0.5297 0.8%

Table 3 FE Analysis Optimum results
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8. 3D Results

Displacements and other scalar values of theoretical experiments were predicted simply by
selecting values for the design variables. The prediction was realized for all time steps of the
sled test simulation, so an animation of the entire process was available in the embedded
META Results Viewer. The accuracy of the predicted 3d field results was quite high since they
had a small deviation in comparison to the computed results of the FE validation model
(Figure 21).

Time: 80ms
M Prediction
BFE Results

Time: 154ms
M Prediction
BFE Results

Figure 21 Overlay of FE & prediction displacements results in 2 different times

The pictures above show an overly between the predicted displacements as computed by the
ML algorithm and the respective FE analysis results. It can be seen that the predicted values are
close to the ones from original FE model, a clear indication that the predictor was subjected to
a satisfactory training and provided accurate results.
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9. 2D Results

2D history curve results such as acceleration magnitude of different body parts, kinetic and total
energy, forces etc., were also predicted for all states. The design variables of the validating
optimum experiment were used in order to predict various 2D curves that were also validated
with the respective plots of the original FE model (Figure 22, Figure 2, Figure ).

Occupant_Safety/occupant_safety | i ion_Run/x2 ined/lc_sled_test_01_at_hyxo/OPTIMIZATION_TASK_1/0001/001/LsDyna/Results/
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Kinetic energy FE Results
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Figure 22 Kinetic Energy results of the FE model vs prediction model
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Figure 233 Middle sternum results of the FE model vs prediction model
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Figure 4 Head acceleration results of the FE model vs prediction model
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10. Conclusion

In this study, predictive models were created using the Machine Learning tool of KOMVOS, to
predict values based on injury criteria and various other dummy body measurements during a
sled test that included an occupant, a seatbelt and an airbag. A DOE study was set using ANSA's
Optimization Tool to get the initial training dataset. The study included 25 experiments that were
solved with the LS-DYNA FE solver. All data was then added in a DM system that can be
manipulated through KOMVOS, where the training of the predictive models would take place.
Utilizing the prediction’s parallel coordinates chart and design variable sensitivity plots, it was
possible to come up with different exploratory ‘what if’ scenarios and apply the respective design
variable values to predict the specified key values in seconds. An Optimization study was ran
using the trained predictor as a response surface, quickly resulting in finding the optimum
design. An FE Analysis was run for the optimum design to validate the occupant criteria
predictions.

In addition, predictors were trained to predict 2D plots and 3D field scalar results that were also
validated against the respective results of the FE Analysis.

The Machine Learning functionality implemented in KOMVOS offers prediction capabilities of
high accuracy for CAE “what if” studies. Combined with the Optimization tool of ANSA and the
post processing capabilities of META, KOMVOS provides powerful tools including capabilities
to create a dataset, train Machine Learning algorithms, create predictive models, and run
optimization studies in a fraction of the actual FE solution time. Results overview and
comparison of the Simulation runs, DOE Studies, predictions of results for theoretical runs and
creation of new experiments through the KOMVOS interface allows for an efficient design
exploration.
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